Research Publications (Applied Sciences)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213
Browse
Browsing Research Publications (Applied Sciences) by Subject "0102 Applied Mathematics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item An inertial iterative method for solving split monotone inclusion problems in Hilbert spaces(American Institute of Mathematical Sciences (AIMS), 2024) Mebawondu, Akindele Adebayo; Sunday, Akunna Sunsan; Narain, Ojen Kumar; Maharaj, AdhirThe purpose of this work is to introduce and study a new type of a relaxed extrapolation iterative method for approximating the solution of a split monotone inclusion problem in the framework of Hilbert spaces. More so, we establish a strong convergence theorem of the proposed iterative method under the assumption that the set-valued operator is maximal monotone and the single-valued operator is Lipschitz continuous monotone which is weaker assumption unlike other methods in which the single-valued is inverse strongly monotone. We emphasize that the value of the Lipschitz constant is not re- quired for the iterative technique to be implemented, and during computation, the Lipschitz continuity was not used. Lastly, we present an application and also some numerical experiments to show the e ciency and the applicability of our proposed iterative method.Item A new iterative approximation of a split fixed point constraint equilibrium problem(Australian Internet Publishing, 2024-06-28) Olana, Musa Adewale; Maharaj, Adhir; Narain, Ojen KumarThe purpose of this paper is to introduce an iterative algorithm for approximat ing an element in the solution set of the common split feasibility problem for fixed points of demimetric mappings and equilibrium problem for monotone mapping in real Hilbert spaces. Motivated by self-adaptive step size method, we incorporate the inertial technique to acceler ate the convergence of the proposed method and establish a strong convergence of the sequence generated by the proposed algorithm. Finally, we present a numerical example to illustrate the significant performance of our method. Our results extend and improve some existing results in the literature.