Repository logo
 

Theses and dissertations (Applied Sciences)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/6

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Removal of selected heavy metals from wastewater using modified agricultural waste
    (2023-09) Msimango, Maureen Nomaxhosa; Qwabe, L. Q.; Ntola, P.
    This study explores the potential of utilizing inexpensive adsorbent materials derived from agricultural waste to eliminate Zn (II), Ni (II) and Cd (II) from water-based solutions. Sugarcane bagasse was chemically modified to extract cellulose and further functionalize extracted cellulose to prepare carboxymethyl cellulose which were used as biosorbents. The biosorbents were characterized using XRD, FTIR (ATR), and SEM for confirmation of physical and chemical properties and surface morphology of the adsorbents. In batch experiments, the effect of various parameters such initial concentration (10-300 mg/L), pH (2- 8), adsorbent mass (0.1-1.7 g), and contact time (5-150 min). Adsorption was poor for all metals below pH 4 and reached maximum removal efficiency at pH 6. The increase in initial concentration favoured the increase in removal efficiency but reaches a maximum beyond 100 mg/L. The increase in biosorbent mass shows favours increase in removal efficiency for Ni (II) and Cd (II) but a decrease was observed for Zn(II). The removal efficiency increased with contact time and reached equilibrium at 60 minutes for all metals and biosorbents. The maximum adsorption capacities of Zn(II), on SCB, SCBC, and CMC were 12.3, 20.9 , and 33.5 mg/g respectively. Ni (II) adsorption capacities on SCB, SCBC, and CMC, were 41.9, 25.4, and 125.7 mg/g respectively. The maximum capacities of Cd(II) on SCB, SCBC, and CMC, were 11.3, 20.8, and 21.6 mg/g respectively. The performance of CMC superseded SCB and SCBC. Kinetic experiments showed that the adsorption process followed pseudo second order whereas the equilibrium studies showed that the adsorption process followed the Langmuir adsorption isotherm