Repository logo
 

Theses and dissertations (Applied Sciences)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Electrochemical and molecular modelling studies to assess the photoreactive properties of Efavirenz
    (2022-09) Mthiyane, Thethiwe Promise; Bisetty, Krishna; Jordaan, M. A.; Uwaya, Gloria Ebube
    Efavirenz (EFV) is commonly used as an antiretroviral drug to treat HIV/AIDS and is known to undergo photoreactions that could be exploited for photodegradation applications. In addition, there is limited information on the photoreactivity of EFV. This work focuses on two case studies to assess the photocatalytic properties of EFV supported by experimental and molecular modelling (commonly referred to as computational chemistry). The first case study deals with the design of an innovative electrochemical sensor for the detection of EFV, using titanium dioxide nanoparticles (TiO2-NPs) doped on glassy carbon electrode (GCE) with nafion as an anchor agent (GCE/TiO2-NPs-nafion). TiO2-NPs were synthesized using Eucalyptus globulus leaf extract and characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS). The electrochemical and sensing properties of the developed sensor for EFV were assessed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) and chronoamperometry. The oxidation peak current response for EFV on the GCE/TiO2-NPs-nafion electrode was greater compared to the bare and modified GCE/TiO2-NPs electrodes. A linear dynamic range of 4.5 to 18.7 µM with a 0.01 µM limit of detection was recorded on the electrode using DPV. The electrochemical sensor demonstrated good selectivity as well as practicability for the detection of EFV drugs with excellent recoveries ranging from 92.0-103.9%. The density functional theory (DFT)-based quantum chemical modelling was used to establish the chemical reactivity for EFV, suggesting the benzoxazine ring as the active site. Monte Carlo (MC) simulations revealed a strong electrostatic interaction on the GCE/TiO2-NPs-nafion-EFV (substrate-adsorbate) system. The results showed good agreement between the MC computed adsorption energies and the experimental CV results for EFV. The stronger adsorption energy of nafion onto the GCE/TiO2-NPs substrate contributed to the catalytic role in the signal amplification sensing of EFV. The second case study deals with the assessment of the photocatalytic degradation of EFV in combination with green synthesized TiO2-NPs. The photocatalytic activity of TiO2-NPs was examined by the degradation of EFV in an aqueous medium and a maximum degradation efficiency of 91.77% was observed at a reaction time of 5 h. In addition, the electronic spectra of the EFV complex bound to single TiO2-NPs in a gas- and solution-phase were investigated using time-dependent density functional theory (TD-DFT) calculations. The calculated spectra obtained in this work were benchmarked against the gas-phase photodecomposition of the EFV- TiO2-NPs complex using UV-vis spectrophotometry. Overall, the results show that the biosynthesized TiO2-NPs have the potential for sensing pharmaceutical applications and their degradation. The results provide an effective way to explore the design of new 2D materials for the sensing of EFV, which is highly significant in the field of medicinal and materials chemistry.
  • Thumbnail Image
    Item
    Development of an electrochemical immunosensor for the detection of steviol glycosides by experimental and computational methods
    (2020-04) Hloma, Phathisanani; Bisetty, Krishna; Sabela, M. I.; Kanchi, S.
    An electrochemical immunosensor employs antibodies as a capture and detection mechanism to produce an electrical charge for the quantitative analysis of target molecules. The current analytical methods for the separation and detection of stevia glycosides can be tedious in terms of sample preparation and the lack of selectivity. However, electrochemical immunosensors provide selective, sensitive and costeffective detection routes for these widely consumed sweeteners. In this study, the author developed an electrochemical immunosensor for the detection and quantification of steviol glycosides, a non-nutritive sweetener widely employed in the food and beverage industries. Most of the artificial sweeteners are low-calorie sweeteners recommended for health-related illnesses. The stability of these sweeteners at even high temperatures has increased their applications in foodstuffs widely. Constant exposure to these sweeteners is somehow associated with health complications, as some are cancer-causing agents. Although there are no reports on stevia glycosides as a health risk sweetener, its widespread use in the food industry needs to be regulated. Herein, the developed immunosensor was achieved by fabricating the platinum electrodes with graphene oxide (GO) assimilated in Zinc Oxide nanoparticles (ZnONPs) with multiwalled carbon nanotubes (MWCNTs) and immobilized with the human sweet receptor subunit T1R2. The electrochemical detection of the natural sweetening compound, Rebaudioside A (Reb A) was evaluated qualitatively and quantitatively using cyclic and differential pulse voltammetry, respectively under optimised conditions in pH 11 borate buffer from -0.4 V to 0.8 V vs Ag/AgCl. The GO/MWCNT/ZnONPs nanocomposite was characterized using High-resolution Transmission Electron microscope (HR-TEM), Thermogravimetric Analysis (TGA), Attenuated Total Reflection Mode Fourier transform infrared (ATR-FTIR) and UV-VIS spectroscopy characterization techniques. Also, asymmetric flow-field-flow fractionation and centrifugal flow-field-flow fractionation equipped with a UV-vis and multi-angle angle light scattering detectors were used to separate and characterize the size distribution of the synthesised ZnO nanostructures. The field flow fractionation (FFF) is one of the efficient separation techniques known, and centrifugal flow fieldflow fractionation separates different particle sized nanoparticles by density, thus determining size variation within the synthesised batch. The results obtained using FFF were compared and validated with the conventional characterisation techniques described above. Computational studies were used to supplement experimental results using docking and adsorption methods. Adsorption studies were carried out to better understand the mechanistic aspects between T1R2, the nanocomposite used to modify the platinum working electrode, and the analyte Reb A. Docking studies between the T1R2 receptor and the steviol glycosides were used to explore the interaction and mechanism of the immunosensor detection. The results of this study may contribute to the development of an immunosensor that can potentially be used to quantify steviol glycosides in the food and beverage industry