Theses and dissertations (Applied Sciences)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/6
Browse
2 results
Search Results
Item Anticancer and antioxidant potential of Amaranthus cruentus protein and its hydrolysates(2020) Ramkisson, Shanece; Mellem, John J.; Venter, SonjaTraditionally, amaranth has been acknowledged to possess vital pharmacological properties with anticancer peptides having been found in Amaranthus cultivars. However, limited knowledge is available over the use of pepsin and alcalase enzymes to form hydrolysates. Thus, this study was aimed at comparing the in vitro anticancer effect of Amaranthus cruentus (grain) protein isolate and hydrolysates using alcalase, trypsin and pepsin. The safety of hydrolysates was investigated using the Ames mutagenicity and Brine Shrimp Lethality assay. Protein hydrolysates were thereafter investigated for their antioxidant potential using the FRAP, ABTS and DPPH assays. Subsequently, the protein hydrolysates were tested for their anticancer and apoptotic potential. The MTT assay was conducted to evaluate the cytotoxic potential of the protein hydrolysates using the HEK 293 (non-cancerous), A549 (cancerous) and MCF-7 (cancerous) cell lines. After that, morphological alterations were examined using the acridine orange and ethidium bromide double stain. Following this, the Annexin V apoptotic detection kit was used to quantify apoptosis together with the Glomax Caspase 3/7 kit to detect changes in the cell cycle Results show A. cruentus isolate and hydrolysates had no mutagenic response against Salmonella typhimurium TA 98 and TA 100 strains. The tested samples did not induce any significant increase in the death percentage of Artemia spp. in comparison to potassium dichromate (control). DPPH assay revealed that the hydrolysed samples had an enhanced scavenging activity compared to the unhydrolyzed sample, with pepsin having the greatest IC50 of 23.06 µg/ml. Amaranthus cruentus isolate (IC50 17.57 µg/ml) was a greater scavenger of the Fe+ ions compared to the control glutathione (IC50 79.81 µg/ml). For ABTS, all hydrolysates had a greater antioxidant scavenging potential compared to the isolate. The MTT cytotoxicity assay revealed that the isolate produced a greater cytotoxic effect on the MCF-7 and A549 cell line when compared to the control (camptothecin). For the non-cancerous cell line (HEK 293), trypsin hydrolysate had the highest toxicity. Apoptotic results revealed that trypsin hydrolysate was the most effective compared to the isolate, which was confirmed from morphological and Caspase 3/7 results. It may be concluded from the findings of this research that hydrolysates from food protein isolates have the potential for use as possible anticancer therapeutics. However, more research needs to be conducted to determine the peptides responsible for anticancer activity as well as the possible mechanism of action.Item Phytoremediation of heavy metals using Amaranthus dubius(2008) Mellem, John JasonPhytoremediation is an emerging technology where specially selected and engineered metal-accumulating plants are used for bioremediation. Amaranthus dubius (marog or wild spinach) is a popular nutritious leafy vegetable crop which is widespread especially in the continents of Africa, Asia and South America. Their rapid growth and great biomass makes them some of the highest yielding leafy crops which may be beneficial for phytoremediation. This study was undertaken to evaluate the potential of A. dubius for the phytoremediation of Chromium (Cr), Mercury (Hg), Arsenic (As), Lead (Pb), Copper (Cu) and Nickel (Ni). Locally gathered soil and plants of A. dubius were investigated for the metals from a regularly cultivated area, a landfill site and a sewage site. Metals were extracted from the samples using microwave-digestion and analyzed using Inductively Coupled Plasma – Mass Spectroscopy (ICP-MS). Further experiments were conducted with plants from locally collected seeds of A. dubius, in a tunnel house under controlled conditions. The mode of phytoremediation, the effect of the metals on the plants, the ability of the plant to extract metals from soil (Bioconcentration Factor - BCF), and the ability of the plants to move the metals to the aerial parts of the plants (Translocation Factor - TF) were evaluated for the different metals. Finally, A. dubius was micro-propagated in a tissue culture system with and without exposure to the metal, and the effect was studied by electron microscopy.