Theses and dissertations (Applied Sciences)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/6
Browse
4 results
Search Results
Item Biodiversity of anaerobic cellulolytic bacteria in landfill sites(2001) Goldstone, Loren; Tivchev, G. N.Landfills play an important role in the removal of waste from the surroundings. There is a limit to the types of waste that can be recycled and the landfill becomes the final method of waste disposal. Because waste constitutes a wide variety of materials, the microbial consortia that develop within a landfill will be equally varied, depending on the type of waste deposited, the temperature of the landfill and moisture content of the waste. The metabolism of these microbial consortia can result in products that are either harmful or beneficial. In order to increase the pool of knowledge on landfill microbiology, it is important to study the various consortia that inhabit the landfill to determine the various microbial interactions that occur and subsequently to manipulate these interactions to enhance the benefits of a landfill site and reduce the harmful effects. In this research, an attempt was made to isolate anaerobic cellulolytic bacteria from a landfill site. Six waste samples, varying in age were obtained over a period of two years. Samples were excavated from a maximum depth of 4m. Samples are processed in anaerobic, phosphate buffer and cultivated in various pre-reduced anaerobic media and incubated under anaerobic conditions. Samples were also collected from other potential anaerobic sites namely, anaerobic sludge, decomposing bagasse, compost, manure, rumen and pond sediment. Results of degradation of the cellulose source (Whatman No. 1 filter paper) indicated that it was possible to cultivate cellulose-degrading microorganisms from the landfill. Zones of clearing around colonies, which would be indicative of cellulose degradation on solid media, were not obtained. Samples from the anaerobic sludge, compost and rumen showed degradation of cellulose in liquid media but not on solid media. It is concluded that the solid media used was unsuitable for the cultivation of anaerobic, cellulolytic bacteria or that the anaerobic conditions employed were not adequate to initiate the growth of the anaerobic cellulolytic bacteria.Item Molecular analyses of pure cultures of filamentous bacteria isolated from activated sludge(2005) Naidoo, DashikaThe activated sludge process is the mostl used biological treatment process. Engineers and microbiologists are constantly seeking ways to improve process efficiency, which can be attributed to the increasing demand for fresh water supplies and proper environmental management. Since the inception of the activated sludge process, bulking and foaming have been major problems affecting its efficiency. Filamentous bacteria have been identified as the primary cause of bulking and foaming. Numerous attempts have been made to resolve this problem. Some of these attempts were effective as interim measures but failed as long term control strategies. The identification of filamentous bacteria and the study of their physiology have been hampered by the unreliability of conventional microbiological techniques. This is largely due to their morphological variations and inconsistent characteristics within different environments. To fully understand their role in promoting bulking and foaming, filamentous bacteria need to be characterized on a molecular level. The aim of this study was, therefore, to identify filamentous bacteria in pure culture with the purpose of validating these findings to the physiological traits of the pure cultures when they were isolated. Fourteen different filamentous cultures were used for this study. The cultures were identified using specific oligonucleotide probes via fluorescent in situ hybridisation and nucleotide sequencing. Prior to sequencing, an agarose gel and a denaturing gradient gel Electrophoresis profile were determined for each isolate. The various techniques were optimised specifically for the filamentous isolates. The isolates were identified as Gordonia amarae, Haliscomenobacter hydrossis, Acinetobacter sp./Type 1863, Type 021N, Thiothrix nivea, Sphaerotilus natans and Nocardioform organisms.Item Functional characterisation of heterotrophic denitrifying bacteria in wastewater treatment systems(2005) Ramdhani, Nishani; Bux, FaizalAtmospheric nitrogen pollution is on the increase and human activities are directly or indirectly responsible for the generation of the various nitrogen polluting compounds. This can lead to the two major problems of eutrophication and groundwater pollution. Therefore, the removal of nutrients such as nitrogen and phosphorus from wastewater is important. Nitrogen removal from wastewater is achieved by a combination of nitrification and denitrification. Thus, there is a need to identify and characterise heterotrophic denitrifying bacteria involved in denitrification in wastewater treatment systems. The aim of this study, therefore, was to characterise heterotrophic denitrifying bacteria through detailed biochemical and molecular analysis, to facilitate the understanding of their functional role in wastewater treatment systems. Drysdale (2001) isolated heterotrophic denitrifiers to obtain a culture collection of 179 isolates. This culture collection was used to screen for nitrate and nitrite reduction using the colorimetric biochemical nitrate reduction test. The isolates were thereafter Gram stained to assess their gram reaction, cellular and colonial morphology. Based on these results identical isolates were discarded and a culture collection of approximately 129 isolates remained. The genetic diversity of the culture collection was investigated by the analysis of polymerase chain reaction (PCR)-amplified 16S ribosomal DNA (rDNA) fragments on polyacrylamide gels using denaturing gradient gel electrophoresis (DGGE). Thus DNA fragments of the same length but different nucleotide sequences were effectively separated and microbial community profiles of eight predominant isolates were created. Batch experiments were conducted on these eight isolates, the results of which ultimately confirmed their characterisation and placed them into their four functional groups i.e. 3 isolates were incomplete denitrifiers, 2 isolates were true denitrifiers, 2 isolates were sequential denitrifiers and 1 isolate was an exclusive nitrite reducer.Item Characterisation of the microbial communities present in an anaerobic baffled reactor utilising molecular techniques(2005) Lalbahadur, Tharnija; Bux, FaizalThe provision of safe and sanitary water is a constitutional right and above all, a necessity of life. As a result of the rapid urbanisation and the past policies of apartheid, a large population of South Africa dwell in informal settlements, where there is very little hope of development, as the government does not possess the resources that are necessary for a full-scale sanitation programme. Therefore, on-site treatments have been considered to provide sanitation in these dense peri-urban areas. The anaerobic baffled reactor (ABR) is one such sanitation system. This reactor utilises the phenomenon of anaerobic digestion to degrade substrates. One of the major disadvantages of any anaerobic treatment processes is the extreme sensitivity of the bacterial communities, thus inducing slow recovery rates following toxic shocks. Therefore, an understanding of these microbial consortia is essential to effectively control, operate and optimise the anaerobic reactor. Fluorescence in situ hybridization, 4’,6-diamidino-2-phenylindole (DAPI) staining and DNA sequencing techniques were applied to determine the microbial consortium, as well as their reactions to daily operating conditions. With an understanding of these populations and their responses to perturbations within the system, it is possible to construct an anaerobic system that is successful in its treatment of domestic wastewater. In situ hybridizations were conducted for three operating periods, each characterised by specific flow rates. Results showed Eubacterial population dominance over the Archaeal population throughout both of the operating periods investigated. However, these cells cumulatively consisted of 50% of the total biomass fraction, as determined by DAPI staining. Group-probes utilised revealed a high concentration of fermentative acidogenic bacteria, which lead to a decrease in the pH values. It was noted that the ABR did not separate the acidogenic and methanogenic phases, as expected. Therefore, the decrease in pH further inhibited the proliferation of Archaeal acetoclastic methanogens, which were not present in the second operating period. DNA sequencing results revealed the occurrence of the hydrogenotrophic Methanobacterium and Methanococcus genera and confirmed the presence of Methanosarcina. Sequencing of the bacterial DNA confirmed the presence of the low G+ C Gram Positives (Streptococcus), the high G+C Gram Positives (Propionibacterium) and the sulfate reducing bacteria (Desulfovibrio vulgaris). However, justifications were highly subjective due to a lack of supportive analytical data, such as acetate, volatile fatty acids and methane concentrations. Despite this, findings served to add valuable information, providing details on the specific microbial groups associated with ABR treatment processes.