Repository logo
 

Theses and dissertations (Applied Sciences)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/6

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Purification, application and immunolocalization of thermostable xylanases
    (2014) Govender, Stephanie; Singh, Suren; Permaul, Kugen; Pillai, Santhosh Kumar Kuttan
    Microbial enzymes are gaining worldwide attention due to their potential industrial applications. Microorganisms producing thermostable -xylanase and their associated hemicellulases have significant application in the paper and pulp, food, animal feed, and textile industries. The potential of partially purified xylanase from Thermomyces lanuginosus MC 134, Luminase PB 100, Luminase PB 200 (a commercial xylanase) and T. lanuginosus DSM 5826 (Sigma Aldrich) was evaluated in bleaching of bagasse pulp. The temperature and pH optima for all the enzymes were 60°C and pH 6, respectively. The temperature (50- 80°C) and pH (5-8) stability of the enzymes were also assessed. All the enzymes were relatively stable at 60°C and pH 6 for 180 min. T. lanuginosus MC 134 retained 80% of its activity at 60°C and pH 6 for 180 min and PB 200 retained 75% of its activity at 80°C for 180 min. T. lanuginosus MC 134 also exhibited good alkaline stability at pH 8. The commercial xylanases Luminase PB 100, Luminase PB 200, T. lanuginosus DSM 5826 (Sigma Aldrich) were purified to homogeneity using a gel filtration column packed with sephadex G-100 and characterized for Km and Vmax. However extracellular crude xylanases from T. lanuginosus MC 134 was purified to homogeneity using (N )2S04 precipitation and gel filtration column, packed with sephadex G-100. The purified xylanases exhibited a molecular mass of- 26 to 24 kDa, given range as determined by SDS page. The Km and Vmax values of Luminase PB 100, Luminase PB 200, T. lanuginosus MC 134, and T. lanuginosus DSM 5826, xylanases were determined by the Michaelis-Menten equation using birchwood xylan as the substrate. The Km value for Luminase PB 100, Luminase PB 200, T. lanuginosus DSM 5826 and T. lanuginosus MC 134 were, 8.1 mg/mL, 11.7 mg/mL and 14.3 mg/mL respectively. The Vmax for Luminase PB 100, Luminase PB 200, T lanuginosus DSM 5826 and T lanuginosus MC 134 were 232.6, 454.6 and 74.6 !Jl11ol/min/mg. Biobleaching conditions of the xylanases were also optimised and the release of reducing sugars and lignin derived compounds showed that an enzyme dosage of 50U/g of pulp was ideal for biobleaching at pH 6 and 60°C for 180 min. This brightness for T lanuginosus MC 134, Luminase PB 200, Luminase PB 100 was 45.5 ± 0.11%, 44.1 ± 0.007% and 42.7 ± 0.03% respectively at pH 6, compared to untreated samples. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. All the enzymes analysed exhibited similar trends in the release of lignin derived compounds and reducing sugars which indicated their potential in the pulp and paper industry.
  • Thumbnail Image
    Item
    A comparative analysis of stability and structure-functional relationships of different xylanases
    (2013-07-30) Tabosa-Vaz, Sacha; Singh, Suren; Permaul, Kugen; Kumar, Ajit
    A comparative thermostability analysis of different partially purified xylanases from Rhodothermus marinus, Bacillus halodurans, Thermomyces lanuginosus and Pulpzyme HC was studied using differential scanning fluorometry (DSF), fluorescence spectroscopy and circular dichroism (CD). The R. marinus xylanase was found to have an optimum temperature and pH of 90oC and 6 respectively while the B. halodurans xylanase was optimally active at 70oC and a broad range of alkaline pH of 8 - 10. The commercially available xylanase from T. lanuginosus showed optimal activity at 50oC and pH 7 while the Novozyme xylanase Pulpzyme HC showed optimal activity at 60oC and pH 7. Fluorescence spectroscopy monitored the microenvironment and fluorescence emission of Trp residues. In their native folded state, Trp are generally located in the core of the protein but during unfolding they become exposed. The fluorescence changes as the enzyme undergoes denaturation due to conformational changes and exposure of Trp residues. Differential scanning fluorometry (DSF) monitors thermal unfolding of proteins in the presence of a fluorescent dye such as Spyro Orange. A wide range of buffers were tested for their ability to increase the xylanase stability. T. lanuginosus had the greatest increase in melting temperature with 0.73M Bis Tris pH 6.5 and peaked highest at 78°C. The B. halodurans xylanase exhibited high pH stability (pH 4-10) and exhibited very little change in melting temperature, from 74°C-77°C over the twenty four different conditions. The R. marinus xylanase had no increase in melting temperature showing a maximum melting temperature of 90oC. Circular dichroism (CD) measures unequal absorption of right- and left-handed circularly polarized light by the molecule. The xylanase from R. marinus exhibited the lowest ΔG of 34.71kJ at 90°C as was expected. The B. halodurans xylanase showed a much higher ΔG of -52.71 at its optimum temperature of 70°C when compared with the xylanases from R. marinus and T. lanuginosus. When comparing the three xylanases activities at 70°C, it can be seen that the B. halodurans xylanase exhibited a lower relative activity then both R. marinus and T. lanuginosus xylanases. All three techniques offered different information on the structure and function relationship. Fluorescence spectroscopy, the change in conformation due to fluorescence emission as a result of increased temperature and salt concentrations. DSF, optimal conditions for increased stability and activity at higher temperatures and CD, conformational changes, the fraction of folded protein and change in Gibbs free energy over a range of temperature.
  • Thumbnail Image
    Item
    Investigations of the bioprocess parameters for the production of hemicellulases by Thermomyces lanuginosus strains
    (2012-08-17) Pillai, Santhosh Kumar Kuttan; Singh, Suren; Permaul, Kugen
    The aim of this study was to evaluate T. lanuginosus for the production of hemicellulases, its yield enhancement using mutagenesis and application of a selected xylanase on bagasse pupl to assess the improvement of pulp properties. The objectives were: To determine the localization of hemicellulases in T. lanuginosus strains, To develop high yielding strains of T. lanuginosus through mutagenensis, To investigate the synthesis of xylanase by T. lanuginosus MC134, To optimize the medium components and cultural conitions of T. lanuginosus MC134 strain, To study the influence of agitation and aeration on the production of xylanase by T. lanuginosus MC134 in a fermenter, To evaluate the bleach boosting abilities of T. lanuginosus xylanase on bagasse pulp, To evaluate simultaneous xylanase production and biobleaching potential of T. lanuginosus.
  • Thumbnail Image
    Item
    Improvement of thermostability of a fungal xylanase using error-prone polymerase chain reaction (EpPCR)
    (2007) Pillay, Sarveshni; Permaul, Kugen; Singh, Suren
    Interest in xylanases from different microbial sources has increased markedly in the past decade, in part because of the application of these enzymes in a number of industries, the main area being the pulp and paper industry. While conventional methods will continue to be applied to enzyme production from micro-organisms, the application of recombinant DNA techniques is beginning to reveal important information on the molecular basis and this knowledge is now being applied both in the laboratory and commercially. In this study, a directed evolution strategy was used to select an enzyme variant with high thermostability. This study describes the use of error-prone PCR to modify the xylanase gene from Thermomyces lanuginosus DSM 5826, rendering it tolerant to temperatures in excess of 80°C. Mutagenesis comprised of different concentrations of nucleotides and manganese ions. The variants were generated in iterative steps and subsequent screening for the best mutant was evaluated using RBB-xylan agar plates. The optimum temperature for the activity of xylanases amongst all the enzyme variants was 72°C whilst the temperature optimum for the wild type enzyme was 70°C. Long term thermostability screening was therefore carried out at 80°C and 90°C. The screen yielded a variant which had a 38% improvement in thermostability compared to the wild type xylanase from pX3 (the unmutated gene). Successive rounds of error-prone PCR were carried out and in each round the progeny mutant displayed better thermostability than the parent. The most stable variant exhibited 71% residual activity after 90 minutes at 80˚C. Sequence analysis revealed four single amino acid residue changes that possibly enhanced their thermostabilities. This in vitro enzyme evolution technique therefore served as an effective tool in improving the thermostable property of this xylanase which is an important requirement in industry and has considerable potential for many industrial applications.