Repository logo
 

Research Publications (Water and Wastewater Technology)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/841

Browse

Search Results

Now showing 1 - 10 of 14
  • Item
    Phenotypic and genotypic characterisation of an unique indigenous hypersaline unicellular cyanobacterium, Euhalothece sp.nov
    (Elsevier, 2018) Mogany, Trisha; Swalaha, Feroz Mahomed; Allam, Mushal; Mtshali, Phillip Senzo; Ismail, Arshad; Kumari, Sheena K.; Bux, Faizal
    A novel halotolerant species of cyanobacterium of the order Chroococcales was isolated from hypersaline estuary in Kwa-Zulu Natal, South Africa. A comprehensive polyphasic approach viz., cell morphology, pigment com-position and complete genome sequence analysis was conducted to elucidate the taxonomic position of the isolated strain. The blue-green oval to rod-shaped cells were 14–18 μm in size, and contained a high amount of phycocyanin pigments. The strain was moderate thermotolerant/alkalitolerant halophile with the optimum conditions for growth at 35 °C, pH 8.5 and 120 g/l of NaCl. Based on 16S rRNA gene sequence phylogeny, the strain was related to members of the ‘Euhalothece’ subcluster (99%). The whole genome sequence was de-termined, and the annotated genes showed a 90% sequence similarity to the gas-vacuolate, spindle-shaped Dactylococcopsis salina PCC 8305. The size of the genome was determined to be 5,113,178 bp and contained 4332 protein-coding genes and 69 RNA genes with a G + C content of 46.7%. Genes encoding osmoregulation, oxi-dative stress, heat shock, persister cells, and UV-absorbing secondary metabolites, among others, were identified. Based on the phylogenetic analysis of the 16S rRNA gene sequences, physiological data, pigment compositions and genomic data, the strain is considered to represent a novel species of Euhalothece.
  • Item
    Sorption isotherms, kinetic and optimization process of amino acid proline based polymer nanocomposite for the removal of selected textile dyes from industrial wastewater
    (Elsevier, 2016-10-18) Raghunath, Sharista; Anand, Krishnan; Gengan, Robert Moonsamy; Nayunigari, Mithil Kumar; Maity, Arjun
    In this article, adsorption and kinetic studies were carried out on three textile dyes, namely Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145). The dyes studied in a mixture were adsorbed under various conditions onto PRO-BEN, a bentonite modified with a new cationic proline polymer (L-proline-epichlorohydrin polymer). The proline polymer was characterized by 1H NMR, Fourier transform infrared spec-troscopy (FT-IR), dynamic light scattering (DLS) and TEM. The PRO-BEN composite was characterized by FT-IR, dynamic light scattering (DLS) (zeta potential), TEM imaging, SEM/EDX and X-ray photoelectron spectroscopy (characterize the binding energy). During adsorption studies, factors involving pH, temperature, the initial con-centrations of the dyes and the quantity of PRO-BEN used during adsorption were established. The results re-vealed that the adsorption mechanism was categorized by the Langmuir type 1 isotherm. The adsorption data followed the pseudo-second order kinetic model. The intraparticle diffusion model indicated that adsorption did not only depend on the intraparticle diffusion of the dyes. The thermodynamic parameters verified that the adsorption process was spontaneous and exothermic. The Gibbs free energy values indicated that physisorption had occurred. Successful adsorption of dyes from an industrial effluent was achieved. Desorption studies concluded that PRO-BEN desorbed the dyes better than alumina. This can thereby be viewed as a recycla-ble remediation material. The PRO-BEN composite could be a cost efficient alternative towards the removal of or-ganic dyes in wastewater treatment.
  • Item
    A theoretical approach to using faecal indicator data to model norovirus concentration in surface water for QMRA : Glomma River, Norway
    (Elsevier, 2016) Petterson, Susan R.; Stenström, Thor-Axel; Ottoson, Jakob
    Monitoring of faecal indicator organisms, such as Escherichia coli, in environmental and drinking waters is inadequate for the protection public health, primarily due to the poor relationship between E. coli and the occurrence of human pathogens, especially viruses, in environmental samples. Nevertheless, measurements of faecal indicator organisms within the risk based approach, can provide valuable information related to the magnitude and variability of faecal contamination, and hence provide insight into the expected level of potential pathogen contamination. In this study, a modelling approach is presented that estimates the concentration of norovirus in surface water relying on indicator monitoring data, combined with specific assumptions regarding the source of faecal contamination. The model is applied to a case study on drinking water treatment intake from the Glomma River in Norway. Norovirus concentrations were estimated in two sewage sources discharging into the river upstream of the drinking water offtake, and at the source water intake itself. The characteristics of the assumed source of faecal contamination, including the norovirus prevalence in the community, the size of the contributing population and the relative treatment efficacy for indicators and pathogens in the sewage treatment plant, influenced the magnitude and variability in the estimated norovirus concentration in surface waters. The modelling exercise presented is not intended to replace pathogen enumeration from environmental samples, but rather is proposed as a complement to better understand the sources and drivers of viruses in surface waters. The approach has the potential to inform sampling regimes by identifying when the best time would be to collect environmental samples; fill in the gaps between sparse datasets; and potentially extrapolate existing datasets in order to model rarer events such as an outbreak in the contributing population. In addition, and perhaps most universally, in the absence of pathogen data, this approach can be used as a first step to predict the source water pathogen concentration under different contamination scenarios for the purpose of quantifying microbial risks.
  • Item
    Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst
    (Elsevier, 2014-05-20) Guldhe, Abhishek; Singh, Bhaskar; Rawat, Ismail; Bux, Faizal
    Oleaginous Scenedesmus sp. was cultivated phototrophically in an open pond for biofuels production. The culture was harvested and subsequently dewatered and dried. The chemical properties of the Scenedesmus sp. lipids were determined as per standard ASTM methods. Biodiesel was synthesized by in situ transesterification from dried biomass using microwave and sonication techniques with tungstated zirconia (WO3/ZrO2) as a solid acid catalyst. In situ transesterification allowed minimizing the requirement of solvents by merging the two steps (i.e. extraction of lipid and conversion to biodiesel) to a single step. The use of a solid catalyst effectively reduces the purification cost of biodiesel due to ease of separation and potential for reuse. The conversion of Scenedesmus sp. lipids to biodiesel was determined by GC. Box–Behnken design was used for optimization of the variables to optimize the biodiesel yield and conversion. The efficiency of the two processes was compared.
  • Item
    Thermal behavior and pyrolytic characteristics of freshwater Scenedesmus sp. biomass
    (Taylor and Francis, 2015) Ranjith Kumar, R.; Ramesh, D.; Mutanda, Taurai; Rawat, Ismail; Bux, Faizal
    Thermal behavior and pyrolytic characteristics of Scenedesmus sp. biomass was investigated under five different heating rates of 5, 10, 20, 30, and 40°C/min by using thermogravimetric analysis. The calorific value and carbon content of the tested biomass sample was 17.65 kJ g−1 and 46.60%, respectively. The data generated for thermogravimetric analysis showed that three stages of thermal decompositions occurred for selected biomass materials for all of the tested heating rates. The maximum volatile matter was evolved in the second stage of thermal decomposition, with temperatures between 273 and 399°C. The maximum thermal decomposition temperature increased from 294 to 330°C as the heating rates increased from 5 to 40°C/min. The average apparent activation energy of selected biomass determined by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods were found to be closer values 203 kJ mol−1.
  • Item
    The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources.
    (Pubmed, 2014-09) Ramanna, Luveshan; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal
    The potential of nitrogen sources supplementing domestic wastewater for the cultivation of microalgae was assessed. Urea, potassium nitrate, sodium nitrate and ammonium nitrate were evaluated for their effect on cultivation and lipid production of Chlorella sorokiniana. Urea showed the highest biomass yield of 0.220 g L−1 and was selected for further experimentation. Urea concentrations (0–10 g L−1) were assessed for their effect on growth and microalgal physiology using pulse amplitude modulated fluorometry. A concentration of 1.5 g L−1 urea produced 0.218 g L−1 biomass and 61.52% lipid by relative fluorescence. Physiological stress was evident by the decrease in relative Electron Transport Rate from 10.45 to 6.77 and quantum efficiency of photosystem II charge separation from 0.665 to 0.131. Gas chromatography analysis revealed that C16:0, C18:0, C18:1, C18:2 and C18:3 were the major fatty acids produced by C. sorokiniana. Urea proved to be an effective nitrogen supplement for cultivation of C. sorokiniana in wastewater.
  • Item
    Assessment of brewery effluent composition from a beer producing industry in KwaZulu-Natal, South Africa
    (PSP, 2014) Enitan, Abimbola Motunrayo; Swalaha, Feroz Mahomed; Adeyemo, Josiah; Bux, Faizal
    The objective of the study was to assess the physico-chemical composition and process variations of the effluent from a brewery industry located in KwaZulu - Natal, South Africa during the months of September 2011 to May 2012. The parameters monitored for the quantitative analysis of brewery wastewater include the total and soluble chemical oxygen demand (TCOD and SCOD), biological oxygen demand (BOD5), total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (TSS), pH, ammonia (NH3), total oxidized nitrogen, nitrate, nitrite, phosphorus, electrical conductivity (EC), crude protein and alkalinity content. On the average, the TCOD and SCOD concentrations of the brewery effluent were 5340.97 and 3902.24 mg/L, respectively, with average pH values of 4.0 to 6.7. The BOD and the solids content of the effluent from the brewery industry were high indicating that the effluent is of biodegradable type. This suggests that the effluent is very rich in organics, and its discharge into the water bodies or the municipal treatment plant can cause environmental pollution or damage the treatment plant. In addition, there were variations in the effluent composition throughout the period of monitoring which might be due to the activities that take place during the production process and the effects of peak periods of beer production. Thus, there is a need for an on-site effluent treatment plant in order to reduce the high pollution of the effluent prior to its discharge to the municipal wastewater treatment plants.
  • Item
    Evaluation of phytotoxicity effect on selected crops using treated and untreated wastewater from different configurative domestic wastewater plants
    (Taylor and francis Online, 2016) Ravindran, B.; Kumari, Sheena K.; Stenström, Thor-Axel; Bux, Faizal
    This study investigated the phytotoxicity effect of untreated and treated wastewater collected from two different configurations of domestic wastewater treatment plants in South Africa. The phytotoxicity effect on vegetable seed growth was studied in terms of germination index (GI), relative seed germination (RSG) and relative root elongation (RRE) using four commercial crop varieties, viz., tomato (Lycopersicon esculentum), radish (Raphanus sativus), carrot (Daucus carota) and onion (Allium cepa). According to phyototoxicity limits, 80% germination and above is regarded as non-toxic and less than 50% GI is regarded as highly toxic and not suitable for agricultural purposes. In our study, seeds were irrigated with concentrations of 25%, 50%, 75%, 100% of treated effluent (TE) and untreated effluent (UTE). The TE results were best with the highest GI (%) recorded as tomato, 177; carrot, 158.5; onion, 132; and lettuce, 124. The results of this study indicate that TE showed no phytotoxicty effects and recorded above 80% GI. The UTE irrigated crops reached a GI of only 50% and above which is clear evidence of the beneficial effect of waste water treatment. The overall results confirmed that treated wastewater has a beneficial effect on agricultural crops and can be used as a liquid fertilizer.
  • Item
    Anaerobic digestion model to enhance treatment of brewery wastewater for biogas production using UASB reactor
    (Springerlink, 2015) Enitan, Abimbola Motunrayo; Adeyemo, Josiah; Swalaha, Feroz Mahomed; Bux, Faizal
    Biogas produced from an upflow anaerobic sludge blanket (UASB) reactor is a clean and an environmentally friendly by-product that could be used to meet partial energy needs. In this study, a modified methane generation model (MMGM) was developed on the basis of mass balance prin-ciples to predict and increase methane production rate in a UASB reactor during anaerobic fermentation of brewery wastewater. Model coefficients were determined using the da-ta collected from a full-scale reactor. The results showed that the composition of wastewater and operational conditions of the reactor strongly influence the kinetics of the digestion process. Simulation of the reactor process using the model was used to predict the effect of organic loading rate and temperature on methane production with an optimum methane production at 29 °C and 8.26 g COD/L/day. Methane produc-tion rate increased from 0.29 to 1.46 L CH4/g COD, when the loading rate was increased from 2.0 to 8.26 g COD/L/day. The results showed the applicability of MMGM to predict usable methane component of biogas produced during anaerobic digestion of brewery wastewater. This study would help industries to predict and increase the generation of renewable energy by improving methane production from a UASB reac-tor. To the best of our knowledge, MMGM is the first reported developed model that could serve as a predictive tool for brewery wastewater treatment plant available in the literature.
  • Item
    Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles
    (Elsevier, 2015) Nasr, Mahmoud; Tawfik, Ahmed; Ookawara, Shinichi; Suzuki, Masaaki; Kumari, Sheena K.; Bux, Faizal
    Hydrogen production from starch wastewater via sequential dark-photo fermentation process was investigated. Two anaerobic baffled reactors (ABRs) were operated in parallel at an OLR of 8.11 ± 0.97 g-COD/L/d, and a HRT of 15 h. ABR-1 and ABR-2 was inoculated with pre-treated sludge and sludge immobilized on maghemite nanoparticles, respectively. Better hydrogen yield of 104.75 ± 12.39 mL-H2/g-COD-removed was achieved in ABR-2 as compared to 66.22 ± 4.88 mL-H2/g-COD-removed in ABR-1. The effluent of ABR-2 was used for further hydrogen production by photo fermentation in ABR-3. An overall hydrogen yield of 166.83 ± 27.79 mL-H2/g-COD-removed was achieved at a total HRT of 30 h. 16S rRNA phylogeny showed that Clostridium and Rhodopseudomonas palustris species were dominant in ABR-1, ABR-2 and ABR-3, respectively.