Theses and dissertations (Engineering and Built Environment)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/10
Browse
8 results
Search Results
Item Experimental and computational exploration of advanced biodiesel fuels and hybridisation process evaluation of feedstocks and their chemical combinations(2022-09-29) Etim, Anietie Okon; Musonge, Paul; Eloka-Eboka, Andrew C.To address the alarming crisis of global energy demand, environmental degradation and climate change, biomass derived diesel fuel is one of the superior renewable fuel options, considered as suitable alternative to petroleum fuel. Important fuel characteristics of biomass derived diesel fuel ranges from being recyclable available local fuel to auspicious performance in combustion emission reduction. In this study, waste oil and other indigenous tropical seed oils, which include; used sunflower oil (USO), linseed oil (LSO), marula seed oil (MSO), baobab seed oil (BSO) and Trichilia emetica kernel oil (TEKO) were investigated for biodiesel production and further scrutinised for the hybridization process for effective applications. The process of hybridization applied was a two-pathway approach via in-situ and ex-situ transesterification reactions. Biological wastes mineral-rich materials such as eggshells, banana peels and pawpaw peels were used to produce the bio-alkaline catalysts. The waste materials were washed with distilled water, dried in the oven and further subjected to high temperature of calcination in the furnace. Eggshells were calcined at 900 oC for 3 h while pawpaw and banana peel were calcined for 3 h at 700 oC respectively. The calcined ash of eggshells and banana peel, eggshells and pawpaw peels were bonded respectively via wet impregnation method and further activated at high temperatures to obtain hybridized bio-alkaline catalysts. The synthesized samples of all catalyst were characterized using Fourier transforms infrared (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The catalysts produced were applied in the production of biodiesel from waste and underutilized oils such as used sunflower oil (USO), linseed oil (LSO), marula seed oil (MSO), baobab seed oil (BSO) and Trichilia emetica kernel oil (TEKO) under an optimized transesterification reaction process. The operating parameters considered viz methanol-to-oil ratio, catalyst loading, and reaction time temperature were investigated and optimized using Response surface methodology (RSM) to obtain the best operation condition for the maximum yields. The optimized condition established from the biodiesel fuel produced was used as a standard for the transesterification reaction condition for the single and hybrid oils. The two pathways hybrid process; In-situ (co-mingling of oils prior transesterification) and Ex-situ (comingling of the single biodiesel fuels after transesterification) was used to evaluate and compare the differences between the two processes and how effective they can be deployed commercially. The four crude oils considered for the study (USO, LSO, MSO and BSO) were analysed while fractions of them were individually converted via transesterification to obtain single biodiesel fuels (SOBFs): used sunflower oil methyl ester (USOME), linseed oil methyl ester (LOME), marula oil methyl ester (MOME) and baobab oil methyl ester (BOME). Then the remaining fractions were pre-treated and co-mingled in 27 various combinations to form new oils (of bi-and poly-hybrids) called the hybridized oils (HOs). These different combinations were then trans-esterified to obtain hybridized oil methyl esters (HOMEs) - In-situ hybridization. Thereafter, the SOBFs - (USOME, LSOME, MSOME and BSOME) were hybridized in the same pattern following the same ratios to form new products termed hybridized methyl ester (HMEs) - Ex-situ hybridization. All the produced biodiesel fuels: USOME, TEKOME, LOME, MOME, BOME and HOMEs were individually blended with petrol-diesel and their chemo-physical properties were analysed and compared with the international (ASTM and EN) and South African (SANS) standards. The impact of the chemical combinations on the physico-chemical properties of all the biodiesel produced was investigated and computed using artificial neural networks (ANN). Their influence on the important thermophysical fuel properties such as cetane number and calorific values were also evaluated. The characterization results revealed that eggshell is an excellent source of natural CaO while the banana and pawpaw peels are rich in potassium compounds such as: KCl, K2SO4, K2CO3, K2O which are efficient catalyst compounds for biodiesel production. The hybridized catalysts were found to be effective and of high basicity and active in oil conversion to biodiesel. The process of in-situ and ex-situ hybridization and their blends with petro-diesel were found to be a very effective approach to be adopted in the biodiesel production process. High conversion of biodiesel yields was obtained via the process of in-situ transesterification, indicating that the transesterification process is not affected by the number of mixing ratios of oils. The two process pathways offered improved properties that are much more conformable to standards than most of the single biodiesel produced fuels. Some properties such as density, acid value, viscosity, calorific value and cetane number were found a bit lower in ex-situ than in in-situ hybrids under the same hybrid conditions. The predicted properties obtained from the two protocols by ANN show good alignment with the experimental values with high regression coefficients close to unity (1). The improved fuel properties obtained following these protocols were within the international and South African standard specifications. The general principles and model predictions of the subsequent properties of biodiesel presented in this study will serve as a database and template for effective development for the overall biofuels applicationItem Hydrogenation of coconut oil into Biofuel (bio-jet fuel and high-value low molecule hydrocarbons)(2021-12-01) Zikhonjwa, Emmanuel; Kiambi, Sammy LewisThe performance of Ni/HZSM-5, HZSM-5, and without a catalyst have been investigated for the hydrogen pressure range of 10-40bar hydrocracking of coconut oil in a packed-bed tubular reactor between 300-450°C. This study concentrates on the effect of the operating parameters (reaction pressure, type of catalyst and reaction temperature) on the yield of transportation fuel carbon range (C5-C22) using the One-Variable-At-A-Time approach. The objectives of this study are to evaluate the effect of process conditions which includes: temperature, pressure, and presence of a catalyst, and to compare the activity of Ni/HZSM-5, HZSM-5 and without catalysts. All tested catalysts were effective in attaining biofuel range in the liquid product. The highest yield and performance of gasoline liquid composition 83.03% was obtained from the reaction pressure at constant temperature of 450 ͦC in 40bar where HZSM-5 catalysts was used, the yield of gasoline liquid composition 82.25% was also produced at constant pressure of 40 bar in 300 ͦC where promoted catalyst(Ni/HZSM-5) was used. Hydrocracking coconut oil under Ni/HZSM-5 catalysts produced the highest yield of jet fuel liquid compositions 78.73% at constant temperature 300°C, and pressure of 10 bar, this was due to less coke that was formed within a reactor and less temperature of 300°C. The highest yield of jet fuel liquid composition 75.67% was also produced at constant pressure of 10 bar at muximum temperature of 450 ͦ C, this was also due to less coke that was formed within a reactor where HZSM-5 was used because of less pressure applied. For the highest yield of diesel liquid composition 24.04%, constant temperature at 400 ͦC of 20 bar where Ni/HZSM-5 was used in figure:5-9 and the highest yield of diesel liquid composition 25.15% was also produced at constant pressure of 20 bar in 450 ͦC where HZSM-5 was used. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) coupled with Energy- dispersive X-ray spectroscopy (EDS) analyses were employed for catalyst characterization. XRD patterns confirm the success of metal doping on ZSM-5. Major peaks at 9.1° and 22.9° corresponding to ZSM-5 crystals were observed in ZSM-5. Impregnation with metals reduced the crystallinity of ZSM-5 supported catalysts.Item Non-oxidative conversion of methane into carbon and petrochemicals over Fe, W,& Mo catalyst systems supported on activated carbon and HZSM-5(2021-04) Musamali, Ronald Wafula; Isa, Yusuf MakarfiNon-oxidative conversion of methane (NOCM) is an environmentally benign route for producing carbon and valuable petrochemicals from methane. Unlike other methane conversion processes like Fischer-Tropsch and methanol synthesis which have been scaled up to commercial level, NOCM process development remains at laboratory scale due to various challenges such as catalyst deactivation due to coking, process thermodynamics, low conversion, and limited selectivity towards useful products. In this present work, a study of non-oxidative conversion of methane into carbon and petrochemicals was done over Fe, W, & Mo catalyst systems supported on activated carbon (AC) and HZSM-5. The catalyst systems were prepared by various techniques at different metal loadings. The prepared catalysts were characterized for phase identification, structural properties, surface area, presence of functional groups, and tested for non-oxidative methane conversion at different operating conditions in a packed bed reactor. Products from non- oxidative conversion of methane were analysed using gas chromatography. To accomplish the research objectives, synthesized binary catalyst systems were developed step by step. Phase one of the study involved synthesis of 24 single metal catalyst systems supported on activated carbon and HZSM-5 between 1.8-7.2% metal loading and tested for non-oxidative methane conversion. Prepared catalysts were screened based on methane conversion. Phase two of the study involved synthesis of 5.4% bimetallic catalyst systems supported on AC/ HZSM-5 and applied for non-oxidative methane conversion. Catalytic activity of Fe-Mo, W-Mo and Fe- W on AC and HZSM-5 supports were evaluated based on methane conversion and product distribution. In the final phase of the study, trimetallic binary catalyst systems (Fe-W-Mo) on AC and HZSM-5 supports were synthesized, characterized, and their catalytic activity evaluated at different metal loading, different metal composition, and different process conditions. The effect of support and catalyst preparation method on catalyst activity was also evaluated. Based on the results obtained, catalyst Fe-Mo/HZSM-5 showed little activity in terms of methane conversion with low C2 and high coke formation whereas catalyst W-Mo/HZSM-5 was very active in methane conversion but less selective towards C2 and aromatic hydrocarbons. On the other hand, catalyst Fe-W showed low methane conversion and low coke formation but exhibited high selectivity toward aromatics. A 5.4% binary catalyst system (Fe-W-Mo/HZSM-5) with equal metal loading did not show much improvement on methane conversion, selectivity towards C2 hydrocarbons, aromatics, and coke. However, when Fe and W metal loading were higher than Mo in this 5.4% binary catalyst system, there was notable increase in methane conversion and coke but C2 formation decreased. On the contrary, when Mo loading was increased and Fe and W metal loading reduced, there was a subsequent decrease in methane conversion and coke formation but C2 and aromatics formation increased by a big margin. From X-ray diffraction (XRD) results, M2C on HZSM-5 produced by transformation of highly dispersed MoO3, was the most active site for the activation of the C-H bond in methane molecules, but these sites were less active for further decomposition of CH∗ radicals. Based on methane conversion, catalytic activity of Fe-W-Mo 3 catalyst systems showed the same trend both on AC and HZSM-5 although methane conversion values were higher on AC than on HZSM-5 support. A wider range of product distribution was realized on catalysts supported on HZSM-5 than on AC support. This was attributed to the HZSM-5 zeolite channel structure and its inherent acidity which promoted shape selectivity towards benzene and its derivatives. Further, methane reacted with Mo6+ on HZSM-5 zeolite to produce CH3+ (a methoxy species on the Bronsted acid sites of the zeolite) and [Mo-H]5+ which were further transformed into a molybdenum-carbene species (Mo=CH2). These species further reacted with CH4 to produce C2 intermediates. The Bronsted acid sites located inside the zeolite channels and shape selectivity of HZSM-5 zeolite were responsible for activation of C- H bond and conversion of the C2 intermediates into benzene and other higher carbon hydrocarbons. Despite intensive research in this area, and to the best of the author’s knowledge, no work on the development of a catalyst system for quantitative control of methane conversion and product distribution using Fe, W, and Mo catalyst systems loaded on AC/HZSM-5 has been reported. Therefore, the novelty in this work lies in the development of a tuneable binary catalyst system for quantitative control of product distribution in methane conversion to carbon and petrochemicals.Item Conversion of biomass-derived oil over promoted ZSM-5 based catalysts(2020-08) Haikela, Endifenge T.; Isa, Yusuf MakarfiCrude canola oil was thermo-catalytically converted to unsaturated hydrocarbons and aromatics. The major products were: 1,5-Heptadien-3-yne, 1,3-Hexadien-5-yne, 1- ethenyl-3-methylene-cyclopentene and Xylenes for Ni-ZSM-5, Benzene, Toluene, and other Aromatics including Ethylbenzene for Sn-ZSM-5 samples. The preparation of Ni and Sn-HZSM-5 was achieved by calcining the commercial NH4-ZSM-5, Si/Al ratio of 50, and promoting the material with Ni and Sn chlorides. Various techniques were used to promote the catalysts, namely, mechanical mixing promotion (MM), incipient wetness promotion (IW) and aqueous promotion (AQ). All the reactions were carried out at a WHSV of 10.6 hr-1 and temperature of 450°C. A fixed bed reactor system was used. To understand the reactions involved in the process, the characterization of the feed was done by GC-FID to identify the fatty acid composition of the Canola oil. The analysis showed that the feed was mainly composed of C18-16 fatty acids. The Gas products were characterized by GC-TCD and revealed the presence of C1 gases: CO, CO2 and CH4. No H2 was detected in the gas products. The selectivity in the gas fraction was barely influenced by the composition of the HZSM-5 based samples and the results show a mean difference within ±1.0%. A fractional conversion of close to 100% for all the tested Ni-loaded samples was observed, no fatty acids were detected in the OLP. Since the detected C18-16 fatty acids are liquids at room temperature, it was concluded that the amount of C18 fatty acids in the gas product was zero. When the HZSM-5 was loaded with Sn (atomic radius = 145pm), at higher loading %, (2.99 and 3.82%) of Sn, the conversion was lowered up to 77.9 and 91.4% from 100% that was observed for lower loading of 0.25 – 1.77%. The organic liquid product fraction was characterized using GC-MS. An analysis was done for the thermo-catalytic products of six different groups of catalysts, namely: Ni- Aqueous promotion; Ni-AQ, Ni-Incipient Wetness promotion Ni-IW; Ni-Mechanical Mixing promotion; Ni-MM; Sn-Aqueous promotion; Sn-AQ, Sn-Incipient Wetness promotion; Sn-IW, and Sn-Mechanical Mixing promotion; Sn-MM. Each of these different metal loading/ promotions were done to understand how the products were affected by increasing the Metal Loading/ promotion. For each of the product streams, the metal loading/ promotion targets of 0.5%, 1%, 3%, 5% and 7% were used. Trends to relate the Metal loading/ promotion to the product output and fractional conversion were done for each metal for comparison of the different product streams. It was observed that for Ni-AQ, Ni-IW and Ni-MM the average amount of aromatics in the organic liquid product for the Metal loading/ promotion was 68.3%, 80.6% and 63.3% respectively. From results it was observed that the activity of the Sn loaded samples increases in the production of various products groups such as Benzene, Toluene and Xylene (BTX) among other aromatics and, Ni activity was more towards Cyclopentane derivatives and Alkynes (XCA). The unpromoted commercial HZSM-5 catalyst produced 7.18% Xylenes, with no Cyclopentane Deravatives and Alkynes detected. Ni-loading exhibited increased catalytic activity towards XCA production for samples loaded using AQ and MM techniques. The samples loaded by IW technique showed activity towards producing Xylene but not Cyclopentane Derivatives or Alkynes. The introduction of Ni has increased the production of unsaturated hydrocarbons lighter than the C18 hydrocarbons such as: 1,5-Heptadien-3-yne, 1,3-Hexadien-5-yne, and 1- ethenyl-3-methylene-cyclopentene. The results obtained from this study show the selectivity toward BTX and other aromatics was lifted when HZSM-5 was promoted with Sn in comparison to the unpromoted HZSM-5 and Ni-HZSM-5. No Cyclopentane Derivatives and Alkynes were detected in any of the products of the Sn loaded samples.Item Optimisation of biodiesel production from Croton Gratissimus oil(2018) Jiyane, Phiwe Charles; Musonge, Paul; Tumba, KanikiConsumption of liquid energy products, primarily fossil-based fuels, by the transportation industry, is high and has caused an escalation of the energy crisis facing global communities. This protracted use of fossil fuels has inadvertently resulted in an increased concentration of CO2 and other greenhouse gases (GHG) in the atmosphere, leading to environmental degradation. An environmentally friendly alternative fuel source, in the form of biofuels, has been found. These biofuels are biodegradable, boasting reduced levels of particulate matter (PM), carbon monoxide (CO), obnoxious sulphur (SOx) and nitrogen compounds (NOx) in their combustion products. In African countries, particularly the Republic of South Africa (RSA), the urgency for the establishment of a viable biodiesel industry is driven by the vulnerability of crude oil prices, high unemployment, climate change concerns and the need for the continent’s growing economies to use their resources in a sustainable manner. In order to address these concerns, this investigation focused on the extraction of non-edible oil from the seeds of the indigenous Croton gratissimus plant, the catalytic synthesis of biodiesel and the optimisation of the developed biodiesel production process. In this optimisation study, biodiesel was produced from oil extracted from Croton gratissimus seeds using synthesised monoclinic sulphated zirconia (SO42–/ZrO2) and KOH as catalysts. Low oil extraction yields (29.35%) obtained for this crop were attributed to its low unsaturated fatty acid content of 25.4%. From the model developed for the esterification of Croton 2– gratissimus oil, the concentration of SO4 /ZrO2 catalyst had the most significant effect in the reduction of the Acid Value of oil. This was substantiated by flat response surfaces observed on the RSM surface plots when all other design factors were varied whilst keeping catalyst concentration constant. The operating conditions for the esterification process that could give an optimum Acid Value of 2.693 mg KOH/g of oil were therefore found to be; 10.96 mass % SO42–/ZrO2 catalyst concentration, 27.60 methanol-to-oil ratio and 64 0C reaction temperature. In the optimisation of the transesterification process, the model showed that catalyst concentration, methanol-to-oil ratio, reaction temperature, and their interactions were all significant model terms. But catalyst concentration and methanol-to-oil ratio, were the terms found to have the most influence on the percentage fatty acid methyl ester (FAME) yield and percentage FAME purity. It was established from the combined model that optimum responses of 84.51% FAME yield and 90.66% FAME purity could be achieved when operating the transesterification process at 1.439 mass % KOH catalyst concentration, 7.472 methanol-to-oil ratio and at a temperature of 63.50 0C. The two-step biodiesel process used in this work, produced biodiesel with a high FAME purity and a relatively high FAME yield. Improvement of the oil extraction process may be possible with polar co-solvent such as ethyl acetate, which may increase the FAME yield in the Croton gratissimus biodiesel production process.Item Alcohols conversion over transition metal based catalyts(2018) Ndebele, Mthobisi Sbonelo; Isa, Yusuf MakarfiEthanol and butanol obtainable through fermentation of lignocellulose biomass have become promising alternative feedstock for production of fuels as they are biodegradable and sustainably regenerated via the photosynthesis cycle. The properties of hydrocarbons produced through alcohol conversion closely resemble those of gasoline. Catalytic systems are reported to play a vital role during alcohol conversion to hydrocarbons. In this study ethanol and butanol were used as a feedstock for production of hydrocarbons over Fe, Zn and Ni catalyst systems supported on zeolite ZSM-5 (Zeolite Socony Mobil-5) and activated carbon (AC). X- Ray Diffraction (XRD), Scanning Electron Microscope (SEM) coupled with Energy- dispersive X-ray spectroscopy (EDS) and Brunauer, Emmet, and Teller (BET) analyses were employed for catalyst characterization. XRD patterns confirmed the success of metal doping on ZSM-5 and activated carbon supports. Major peaks at 7.96° and 23.97° corresponding to ZSM-5 crystals were observed in ZSM-5, and AC was found to be amorphous. Impregnation with metals reduced the crystallinity of ZSM-5 supported catalysts. Whereas SEM analysis showed that catalysts supported on ZSM-5 exhibited irregular shapes and catalyst supported on activated carbon exhibited disordered structures. The BET analyses confirmed that the surface areas of promoted catalysts decreased after metal doping. Evaluation of the catalysts were carried out in a ½ inch stainless steel reactor at 400 °C and atmospheric pressure with a weight hourly space velocity (WHSV) of 2.5 h-1 (g feed)/ (g catalyst). The ZSM-5 support performed better than activated carbon support. More than 90% conversion was achieved over catalysts supported on ZSM-5. Production of hydrocarbons over catalysts supported on activated carbon were as a result of the active component. Conversion of feedstock was observed to produce more benzene, toluene and xylene (BTX) compounds with an increase in butanol content. 100% conversion was achieved with pure butanol and not more than 99.86% conversion was achieved with pure ethanol. Catalyst systems supported on HZSM-5 and activated carbon were successfully synthesised. Ethanol, butanol and ethanol-butanol mixtures were successfully converted to liquid hydrocarbons and the conversion was greater than 90%. On the promoted catalysts, production of BTX were suppressed and various metals were observed to perform differently.Item Catalytic conversion of alcohol-waste vegetable oil mixtures over aluminosilicate catalysts(2018) Ganda, Elvis Tinashe; Isa, Yusuf MakarfiThermochemical catalytic conversion of ethanol-waste cooking oil (eth-WCO) mixtures was studied over synthesised aluminosilicate catalysts HZSM-5, FeHZSM-5 and NiHZSM-5. The thermochemical reactions were carried out at temperatures of 400° and 450°C at a fixed weight hourly space velocity of 2.5 h-1 in a fixed bed reactor system. Successful conversion of the eth-WCO mixtures was carried out over the synthesised catalyst systems and in order to fully understand the influence of the catalysts, several techniques were used to characterise the synthesised materials which include XRD, SEM, EDS, BET techniques. Results of the catalyst characterisation showed that highly crystalline solid material had been formed as evidenced by the high relative crystallinity in comparison with the commercial HZSM-5 catalyst at 2θ peak values of 7°- 9° and 23°- 24°. The introduction of metals decreased the intensity of the peaks leading to lower values of relative crystallinity of 88% and 90% for FeHZSM-5 and NiHZSM-5, respectively. However this was even slightly higher than the commercial sample which had a value of 86% with respect to HZSM-5 synthesised catalyst taken as reference material. There was no significant change in XRD patterns due to the introduction of metal. Elemental analysis done with energy dispersive spectroscopy showed the presence of the metal promoters (Fe, Ni) and the Si/Al ratio obtained from this technique was 38 compared to the target ratio of 50 set out initially in the synthesis. From the SEM micrographs the morphology of the crystals could be described as regular agglomerated sheet like material. Surface area analysis showed that highly microporous crystals had been synthesised with lower external surface area values ranging from 57.23 m2/g - 100.82 m2/g compared to the microporous surface area values ranging from 195.96 m2/g to 212.51 m2/g. For all catalyst employed in this study high conversions were observed with values of over 93 %, almost total conversion was achieved for some samples with values as high as 99.6 % with FeHZSM-5 catalysts. Despite the high level of conversion the extent of deoxygenation varied with lower values recorded for FeHZSM-5 (25%WCO) at 400°C and NiHZSM-5 (75%WCO) at 450°C with oxygenated hydrocarbons of 19.5% and 19.33% respectively. The organic liquid product yield comprised mostly of aromatic hydrocarbon (toluene, p-xylene and naphthalene) decreased with the introduction of metal promoters with NiHZSM-5 producing higher yields than FeHZSM-5. For the pure waste cooking oil (WCO) feedstock the parent catalyst HZSM-5 had a liquid yield of 50% followed by NiHZSM-5 with 44% and lastly FeHZSM-5 had 40% at 400°C which may be seen to follow the pattern of loss of relative crystallinity. An increase in operating temperature to 450°C lowered the quantity of organic liquid product obtained in the same manner with the HZSM-5 parent catalyst still having the highest yield of 38% followed by Ni-HZSM-5 with 36% and Fe-HZSM-5 having a value of 30% for pure waste cooking oil feedstock which may be attributed to thermally induced secondary cracking reactions. For all catalyst systems with an increase in the content of waste cooking oil from 25% to 100% in the feed mixture there was a linearly increasing trend of the liquid product yield. HZSM-5 catalyst increased from 14% to 50% while FeHZSM-5 increased from 16% to 40% and NiHZSM-5 increased from 12% to 44% at a temperature setting of 400°C with lower values observed at 450°C.Results obtained in this study show the potential of producing aromatics for fuel and chemical use with highly microporous zeolite from waste material such as waste cooking oil forming part of the feedstock.Item The effectivness of using a non-platinum material combination for the catalyst layer of a proton exchange membrane fuel cell(2016) Reddy, Dwayne Jensen; D'Almaine, George FrederickThe effectiveness of using a low cost non - platinum (Pt) material for the catalyst layer of a polymer electrolyte fuel cell (PEMFC) was investigated. A test cell and station was developed. Two commercial Pt loaded membrane electrode assemblies (MEA) and one custom MEA were purchased from the Fuelcelletc store. Hydrogen and oxygen were applied to either side of the custom MEA which resulted in an additional sample tested. An aluminium flow field plate with a hole type design was manufactured for the reactants to reach the reaction sites. End plates made from perspex where used to enclose the MEA, flow field plates, and also to provide reactant inlet and outlet connection points. The developed test station consisted of hydrogen and oxygen sources, pressure regulators, mass flow controllers, heating plate, and humidification units. A number of experimental tests were carried out to determine the performance of the test cells. These tests monitored the performance of the test cell under no-load and loaded conditions. The tests were done at 25 °C and 35 °C at a pressure of 0.5 bar and varying hydrogen and oxygen volume flow rates. The no-load test showed that the MEA’s performed best at high reactant flow rates of 95 ml/min for hydrogen and 38 ml/min for oxygen. MEA 1, 2, 3, and 4 achieved an open circuit voltage (OVC) of 0.936, 0.855, 0.486 and 0.34 V respectively. The maximum current density achieved for the MEAs were 0.3816, 0.284, 15x10-6, and 50x10-6 A/cm2. Under loaded conditions the maximum power densities achieved at 25 °C for MEA’s 1, 2, 3, and 4 were 0.05, 0.038, 2.3x10-6, 1.99x10-6 W/cm2 respectively. Increasing the temperature by 10°C for MEA 1, 2, 3, 4 resulted in a 16.6, 22.1, 1.79, 10.47 % increase in the maximum power density. It was found that increasing platinum loading, flow rates, and temperature improved the fuel cell performance. It was also found that the catalytic, stability and adsorption characteristics of silver did not improve when combining it with iridium (Ir) and ruthenium oxide (RuOx) which resulted in low current generation. The low maximum power density thus achieved at a reduced cost is not feasible. Thus further investigation into improving the catalytic requirements of non Pt based catalyst material combinations is required to achieve results comparable to that of a Pt based PEMFC.