Theses and dissertations (Engineering and Built Environment)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/10
Browse
2 results
Search Results
Item Application of synthesized magnetic nanoparticles for biogas production using anaerobic digestion(2023) Amo-Duodu, Gloria; Rathilal, Sudesh; Chollom, Martha NoroSouth Africa is encountering severe challenges in the areas of energy, water, and wastewater management in recent times. This study addresses both water and energy aspects. It aims at using synthesised magnetic nanoparticles (MNPs) on anaerobic digestion (AD) for biogas production from various wastewater sources in South Africa. The study experimented the feasibility of five different synthesized magnetic nanoparticles, magnetite (Fe3O4), copper ferrite (CuFe2O4), nickel ferrite (NiFe2O4), magnesium ferrite (MgFe2O4) and aluminium ferrite (AlFe2O4) on two different wastewater samples (industrial and municipal wastewater) from three sampling sources, Umbilo water works, Umgeni water and a sugar refinery industry. Five research objectives were accessed. The first objective was the synthesis and characterisation of MNPs using scanning electron microscopy/energy dispersive x-ray (SEM/EDX), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. The results showed a surface morphology of facecentred and monoclinic crystal structures with a size less than 20 nm. The nanostructures of ferrimagnetite and magnetite were obtained, and it had an O-H stretching and Fe-O vibration functional groups. The surface area obtained was found to be high for magnetite (Fe3O4) which was 27.597 m2 /g. The second objective was to evaluate the AD performance in terms of water quality and biogas production. This was carried out in two stages. The first was to evaluate the five MNPs with sugar refining wastewater. The second stage was to evaluate the performance of three best performing MNPs on two wastewater samples from Umbilo wastewater. The results for the first stage showed good degradation of organic matter for the bioreactors with MNPs which resulted in a higher yield of biogas and methane as compared to the control as well as good removal of contaminant (chemical oxygen demand (COD), colour and turbidity). Among the five MNPs used, Fe3O4, NiFe2O4 and CuFe2O4 had a contaminant removal efficiency of 60- 70% and a cumulative biogas yield of more than 140 ml/day with more than 85% methane composition, hence these three MNPs were found to be the best performed MNPs. The results obtained from the second stage for the three best performed MNPs indicated a high pollutant removal efficiency of more than 70% for Fe3O4, as well as a biogas yield of more than 1100 ml/day and a methane composition of approximately 98%. The third objective was the evaluation and optimisation of the anaerobic magnetised system for biogas production while the fourth objective involved a comparative study between the performances of magnetised biochemical methane potential (BMP) to non-magnetised biochemical methane potential. From the optimisation study, the predicted results obtained from the BBD-RSM showed an average contaminant removal of 70% and a biogas yield of 522 ml/day at an optimum MNP load of 0.5 g, retention time of 45 days, inoculum load of 500 ml, and a temperature of 35℃ with a desirability of 96% as the optimum conditions. With less than 2% deviation, the confirmatory test demonstrated equal performance at the optimum conditions. Findings from the fourth objective indicated that the BMP system with MF exposure exhibited a contaminant removal rate of over 80% and a biogas generation of 1715 ml/day with a 99.94% methane composition. Overall, the system that included both MF and MNP performed better than the other in terms of biogas yield and colour removal. The final objective was the kinetic study of the anaerobic magnetised system using modified Gompertz and first-order kinetic models. The results obtained from the kinetics showed that the modified Gompertz model described the kinetics and dynamics of the anaerobic magnetised system better than the firstorder kinetic model with a correlation co-efficient (R2 ) over 0.9999 and an error less than 0.0002. Therefore, the possibility of using MNPs, particularly magnetite (Fe3O4), in an AD system for biogas production from wastewater was found to be extremely feasible and without negative environmental consequences. Incorporating both MF and MNP in AD was also beneficial for wastewater treatment because it eliminated the need for post-treatment.Item Life cycle assessment of the production of cement : a South African case study(2021-12-01) Olagunju, Busola Dorcas; Olanrewaju, Oludolapo AkanniThe relentless ongoing pursuit of innovation, development, urbanization and immigration for a better quality of life has impacted the natural environment. Also, the various consequences of continuous industrial activities are seen in the departure from what is supposed to be the norms of nature and an ideal environment free of toxicity, pollution and unquantifiable instantaneous changes. One of these is variation in temperature experienced in recent times as against what it was about 2000 years ago before the industrial revolution. A world with an increasing population requires infrastructure to support this growth. The construction industry is able to support this growth by building necessary structures that will accommodate environmental sustainability. However, the construction industry is responsible for several environmental impacts as a result of various activities. Concrete is one of the major base materials used in the construction industry and cement is an essential ingredient in concrete production. Several environmental impacts ranging from high greenhouse gas (GHG) levels to high energy consumption (fossil fuel and electricity) to high resource usage are associated with cement production. Quantifying these impacts is a major roadmap to reducing them. In this study an analysis of the production model of South African cement plants was carried out so as to quantify its impacts, and know how they consequently affect the lives of South Africans, her resources as well as the ecosystem; so that proper mitigation strategies can be recommended. The study carried out a Life cycle assessment (LCA) of cement using both the midpoint and endpoint approaches of the LCIA. LCA is a tool used to analyze the environmental impact of a process or product from start to finish. This study carried out a cradle-to-gate analysis of 1kg of cement produced in a typical South African plant using data from the Ecoinvent database and SimaPro 9.1.1 software. The result showed that for every 1kg of cement produced, O.993 CO2 eq, was emitted into the atmosphere; 98.8% was actual CO2 emission and its resultant effect was global warming which causes changes in climatic conditions. Also, 1.6kg of 1,4-Dichlorobenzene (1,4-DCB) eq was emitted into the air and water, which caused high toxicity in these media and for every 1kg of cement produced, 0.139kg of oil eq was produced and its effect was seen in fossil resources scarcity. Of this value, 0.125kg was from the burning of coal In both approaches, the result was further analyzed with respect to five major production processes: (1) Clinker production (2) Raw material consumption (3) Electricity usage (4) Fuel consumption and (5) Transportation. The results showed that the clinker production stage contributed 76.3% to global warming; and raw material consumption contributed 95.9%, 99.9%, 90.7%, and 77.9% to ionization radiation, mineral scarcity, fossil resource scarcity and terrestrial ecotoxicity, respectively. Fuel consumption contributed 98.6%, 96.3%, 85.7% and 76.9% to freshwater eutrophication, marine eutrophication, human carcinogenic toxicity, and human non-carcinogenic toxicity, respectively. Electricity usage contributed 65.8% and 64.8% to stratospheric ozone depletion and fine particulate matter formation, respectively. Though South Africa relies on the importation of clinker and cement, in the endpoint approach an estimation was carried out based on the annual requirement of cement in South Africa without importing either commodity. The result showed that 55 404 was the potential number of human lives that could be endangered annually; 133 species had the potential to be endangered annually, and the effect of a potential scarcity of resources caused total a marginal price increase of R6.2 billion due to these damages. The results of the analysis are in line with previously published literature but with slight variations. In conclusion, the study prescribed mitigation and adaptation strategies to counter these environmental impacts.