Theses and dissertations (Engineering and Built Environment)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/10
Browse
3 results
Search Results
Item Optimization of anaerobic co-digestion of sewage sludge using bio-chemical substrates(2018) Madondo, Nhlanganiso Ivan; Chetty, ManimagalayThe anaerobic process is increasingly becoming a subject for many as it reduces greenhouse gas emissions and recovers carbon dioxide energy as methane. Even though these benefits are attainable, proper control and design of the process variables has to be done in order to optimize the system productivity and improve stability. The aim of this research was to optimize methane and biogas yields on the anaerobic co-digestion of sewage sludge using bio-chemical substrates as co-substrates. The first objective was to find the bio-chemical substrate that will generate the highest biogas and methane yields. The anaerobic digestion of these substrates was operated using 6 L digesters at 37.5℃. The substrate which generated the highest biogas and methane yield in the first batch experiment was then used for the second batch test. The objective was to optimize the anaerobic conditions (substrate to inoculum ratio, co-substrate concentration and temperature) in-order to optimize the biogas and methane yields. The second batch test was achieved using the conventional One-Factor-At-A-Time (OFAT) and the Design of Experiment (DOE) methods. Final analysis showed that the bio-chemical substrates could be substrates of interest to biogas generators. Amongst the substrates tested in the first batch experiment glycerol (Oleo-Chemical Product waste) generated the highest methane and biogas yields of 0.71 and 0.93 L. (g volatile solids added)-1, respectively. It was believed that glycerol contains significant amount of other organic substances such as lipids that have higher energy content than the other bio-chemical substrates, thus generating larger biogas and methane yields. Moreover, digestion of sewage sludge alone produced biogas yields of 0.19 L /g VS and 0.33 L/g COD, and methane yields of 0.16 L/g VS and 0.28 L/g COD. Generally, co-digestion yields were higher than digestion yields of sewage alone. Using the OFAT method the results of the second batch test on glycerol demonstrated highest amounts of volatile solids (VS) reduction, chemical oxygen demand (COD) reduction, biogas yield and methane yield of 99.7%, 100%, 0.94 L (g VS added)-1 and 0.75 L (g VS added)-1 at a temperature, substrate to inoculum ratio and glycerol volume of 50℃, 1 (on VS basis) and 10 mL, respectively. Above 22 mL and substrate to inoculum ratio of 1, the process was inhibited. The DOE results suggested that the highest methane and biogas yields were 0.75 and 0.94 L (g VS added)-1, respectively. These results were similar to the OFAT results, thus the DOE software may be used to define the biogas and methane yields equations for glycerol. In conclusion, anaerobic co-digestion of bio-chemical substrates as co-substrates on sewage sludge was successfully applied to optimize methane and biogas yields.Item The effect of biomass acclimation on the co-digestion of toxic organic effluents in anaerobic digesters(2008) Chamane, Ziphathele; Pillay, Lingam; Buckley, Chris; Remigi, EnricoCurrently KwaZulu-Natal (KZN) province is populated with textile industry, which produces wastewater, some of which is not biodegradable. Due to the stringent environmental regulations the wastewater cannot be discharged into the rivers or public owned treatment systems. The alternative solution is to co-dispose this wastewater with easily biodegradable waste (labile effluent). The aim of this investigation was to develop a process protocol for the codigestion of high strength and toxic organic effluents under mesophilic conditions (35°C ± 2°C), with emphasis on the effect of biomass acclimation. A total of four effluents were chosen for this study, two labile (distillery and size) and two recalcitrant (scour dye and reactive dye). Two anaerobic batch experiments and two pilot scale trials were performed. The first batch anaerobic experiment investigated the influence of biomass source in anaerobic treatability. The second batch test investigated, whether biomass acclimation enhanced the biodegradability of pollutants. The pilot scale trials were the scale up version of the biomass acclimation test. The results showed sludge from Umbilo Wastewater Treatment Works was a superior biomass source, producing more gas and methane compared to Mpumalanga waste. For the high strength organic waste, the acclimated size and distillery samples produced 50% more biogas and methane compared to non-acclimated samples. This confirms that the biomass acclimation enhances the biodegradability. The biomass acclimation did not enhance the biodegradability of the recalcitrant effluent (scour dye). The pilot scale trials did not yield meaningful data; therefore it could not be proven if acclimation works on a larger scale.Item Process development for co-digestion of toxic effluents : development of screening procedures(2009) Dlamini, Sithembile; Pillay, Visvanathan LingamurtiThe primary objective of this project was to establish a screening protocol which could be used to access high strength/toxic effluent for toxicity and degradability prior to being disposed in wastewater treatment works. The serum bottle method (materials and method section) is simple, makes use of small glass vials (125 mℓ-volume were used in this research) which do not require any stirring nor feeding device or other engineered tool: a serum bottle is sealed immediately after all components are poured inside and thereafter conducted in a batch mode and occasionally shaken to ensure adequate homogenisation of the components. The only variables which are regularly measured are the volume of biogas produced and gas composition. The two assays, originally developed by Owen et al. (1979) to address the toxicity and the biodegradability have been combined in a single test called AAT, Anaerobic Activity Test, which enables one to assess simultaneously the inhibitory effect on the methanogenic biomass and the biodegradability of the test material as well as the ability of the biomass to adapt to the test material and therefore to overcome the initial inhibition. The screening protocol is illustrated in Annexure A. The protocol consists of a sequence of assays which employ the serum bottle methodology. A first step of the procedure is aimed at rapidly estimating whether the effluent is potentially toxic to the methanogenic biomass and in what concentration. The second step is a more extensive screening, aimed at precisely characterising the toxicity of the effluent, the extent of biodegradation that can be achieved, as well as at establishing whether a potential for adaptation of the biomass exists upon exposure. If the sample passes the screening stage, the same serum bottle method will be used to conduct a series of batch co-digestion experiments aimed at evaluating a convenient volumetric ratio between the test material and the readily biodegradable substrate. Finally, a laboratory-scale codigestion trial could simulate the full-scale process, thus enabling the selection of appropriate operating conditions for the start-up of the full-scale implementation. This the protocol has been used to assess the amenability to be anaerobically (co)digested of four industrial effluents, i.e. size and distillery effluents which are classified as high strength and scour and synthetic dye effluents classified as toxic. From the biodegradability and toxicity assays the following conclusions were drawn. The size and distillery effluent were found to be ii degradable at 32 g COD/ℓ and 16 g COD /ℓ concentrations respectively. Concentrations higher than these stipulated above were found inhibitory. Scour effluent was found to be recalcitrant at all concentration tested and synthetic dye was 100 % degradable at 0.12 g COD/ℓ and lower and highly inhibitory at concentration higher than 1.1 g COD/ℓ. Co-digestion experiment using serum bottle AAT method were undertaken between effluents i.e. size + distillery, size + scour, distillery + synthetic dye in an attempt to verify whether the digestion performance benefits from simultaneous presence of the two substrates. The volumetric ratios between the effluents were 1:1, 1:2, 2:1. The presence of two mixtures in the case of size and distillery had better methane production compared to individual substrate i.e. size or distillery separate. The mixture with volumetric flow rate ratio of 2:1 (size: distillery) was preferable in terms of process performance as it had highest COD removal compared to the other mixtures /ratios and individual substrates. The mixture of size and scour (2:1) had highest degradation percentage compared to other ratios but not high enough to qualify as degradable (less than 50 %). The mixture of distillery and synthetic dye had the same pattern with ratio of 2:1 giving the best COD conversion. The pattern than can be drawn from the degradability of mixtures is: the degradability of mixtures increase with the increasing amount of the most biodegradable compound/effluent in the mixture. Serum bottle results provided the detailed information regarding the safe operating parameters which should be used during the starting point for the larger scale investigation i.e. lab-scale investigations. The lab scale investigations were conducted primarily to validate screening and monitor how the digestion progresses and also to provide data for future project i.e. pilot plant investigation. Other effluents i.e. scour and synthetic dye and their co-digestion mixture were excluded from the lab-scale investigations since they were found to be non- biodegradable i.e. their COD conversion was less the 50 % in the screening protocol. Due to time constrains and other technical difficulties in the laboratory, the co-digestion of size and distillery mixture trials we not conducted on the laboratory scale. Laboratory-scale digestion trials showed that the best organic loading rate for distillery effluent in terms of reactor performance and stability was 1.0g COD/ℓ with efficiency of about 45 %, and for size was 2.0g COD/ℓ with an efficiency of 40 %. The efficiencies obtained in both effluents trials could be greatly improved by acclimation; however these results showed that the digestion of these effluents on the bigger scale is possible.