Research Publications (Engineering and Built Environment)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/215
Browse
Item 39th Johannesburg International Conference on “Chemical, Biological and Environmental Engineering” (JCBEE-23) Nov. 16-17, 2023 Johannesburg (South Africa)(International Institute of Chemical, Biological & Environmental Engineering (IICBEE), 2023-11-16) Chetty, Manimagalay; Rathilal, Sudesh; Tetteh, Emmanuel; Singh, NikitaAbstract—Recent energy demand and environmental concerns associated with fossil fuels makes algae biomass a desirable energy source. Algal biomass has a high organic content and a variety of metabolic properties that make it a promising resource for managing wastewater and sequestering CO₂, in addition to producing profitable biobased products. However, the operation and valorization of algae biomass on a large scale are accompanied by significant costs and setbacks. Therefore, the transition towards a biobased economy requires this study to examine emerging technologies that could utilize algae biomass as an industrialized feedstock from the wastewater settings. A comprehensive analysis of various green technologies of producing high-value products (lipids and hydrocarbons) from algae biomass was reviewed. The fundamental principles that limit the cultivation , extraction, and conversion of different types of algae biomasses for commercialization are discussed. Furthermore, the challenges, future research directions and potential opportunities of valorizing algae biomass was highlighted. It was noted that, exploring algae biomass towards sustainable waste management with resources recovery is viable for industrialization.Item Capacity challenges facing civil engineering contractors in Kwazulu-Natal, South Africa(IJEIT, 2013-05) Ntuli, Bonga; Allopi, DhirenInsolvency maybe broadly defined as an inability of business entity to meet pending financial commitments. For a construction firm, such a situation creates conditions whereby a business entity is unable to fulfill its contractual obligations with regard to work in progress or credit owing. There are indications to suggest that during times of adverse conditions, the occurrences of insolvencies are mutually exclusive and remain a subject of debate. The occurrences of these financial facilities seem to have adversely affected business operations within the civil engineering construction Industry. in South Africa, figures released by the South African Federation of Civil Engineering Contractors (SAFCEC) in 1992 were suggesting an expected general decline in work load handling by this sector. This was a result of scaling down of heavy Infrastructure projects because of government shifting focus to housing and other related projects mainly towards meeting the needs of the previously disadvantaged communities. During that period large contractors suffered financially and some went through insolvency. The South African government had also put emphasis to transform the sector to allow participation of emerging and small contractors but this was not properly regulated as most of these contractors did not have the experience and skills to operate sustainable construction firms. The Construction Industry Development Board (CIDB) was established in 2000 as a statutory body to provide leadership to stakeholders and to stimulate sustainable growth, reform and improvement of the construction sector for effective delivery and the industry’s enhanced role in the country’s economy. Construction Industry Development Board (CIDB’s) regulations were implemented after 2003 and are continuously improving the sector’s growth. This research seeks to evaluate the findings of an investigation regarding challenges facing Civil Engineering Contractors in KwaZulu- Natal, South Africa. The research reports on the basis of the hypothesis that “the prominent factors associated with civil engineering contractor’s insolvencies are related to operational and strategic issues”. The analysis of the findings from the questionnaires and liquidators reports supports the hypothesis that operational management and strategic factors attribute to high failure rate amongst civil engineering contractors. From the findings, a number of recommendations are made to develop strategies to promote growth and sustainability in the civil construction industry especially amongst emerging contractors. This paper focuses on the questionnaire feedback from construction firm owners and will discuss the findings of the survey.Item Comparative analysis of specific energy consumption and energy consumption benchmarking in galvanising plants(IEOM Society International, 2022-08-04) Dewa, MendonThe inadequacy of sustainable energy is endlessly posing major challenges globally. The issue of energy optimisation is indispensable for manufacturing sector, particularly for a hot-dip galvanising process where galvanising furnaces are the significant energy users. This study is aimed at comparative analysis of specific energy consumption and energy consumption benchmarking in four galvanising plants with the view to necessitate the identification of best practices. Energy baselines were used as quantitative reference points to compare energy performance indicators and quantify fluctuations in energy performance during the baseline and reporting periods. A quantitative analysis was also conducted to benchmark four galvanising facilities on factors that included the electricity/zinc ratio, electricity /dips ratio and product tonnage/zinc used ratio. The results revealed improved performance for plant 4 over time relative to the baseline consumption when compared to plants 1, 2 and 3. Plant 4 also outperformed other facilities after the energy efficiency interventions in terms of electricity/zinc ratio and electricity/ product tonnage ratio. Given the disparity between the results of specific energy consumption (SEC) for the four plants, it was concluded that SEC alone should not be used as an energy performance indicator.Item Conceptual framework of environmental sustainable interventions with the use of green infrastructure design criteria on projects(2014) Saroop, Shian Hemraj; Allopi, DhirenThis paper presents a conceptual framework that incorporates eco-efficiency on Infrastructure projects with the use of the environmentally sustainable criteria on infrastructure projects. Mainstreaming environmental aspects and incorporating the eco-efficiency concept into various stages of infrastructure development have not been considered as much as they should have been. Engineers need to look at greener technologies rather than just using traditional engineering solutions. This paper aims to develop a framework that enables a project to be designed in accordance with environmentally sustainable criteria. The key aim of the framework was to create a more socially, economically, and environmentally sustainable neighbourhood, which focused on combating flooding, waste management, water recycling and enhancing biodiversity.Item Data re-sequencing in Smart Grids(IEEE, 2016-11) Khumalo, Zephaniah Philani; Nleya, BahkeCurrently, legacy electrical power grids are being modernized into Smart Grids. These will in turn play a crucial role in real-time balancing between energy productions versus energy consumption. Each Smart Grids will dedicate an advanced metering infrastructure that facilitates collection, storing as well as analyzing data from smart meters to the authorized parties, and also carrying commands, requests, messages and software updates from the authorized parties to the smart meters. As such, data aggregation as well as unimpeded data relaying is a prerequisite for guaranteeing a large acceptance and deployment of Smart Grids. In this paper we provide an overview framework for analyzing packet re-sequencing within the Smart Grid. We utilize the random shortest path calculation algorithm to select the desired routes from source to a given destination. It is from among these that ultimately multipath (dual path) routing of the Advanced Metering Infrastructure data is carried out, hence resulting in re-sequencing necessities.Item Green roofs and stormwater runoff quality in the urban landscape in South Africa(National Research Council Canada, 2021-06-20) Sucheran, Arisha; Sucheran, ReshmaA number of sustainable urban drainage systems (SuDS), such as green roofs, are being developed and implemented in cities around the world to help reduce stormwater runoff and improve stormwater runoff quality. This study compares the water quality of green roofs with that of conventional roofs in the eThekwini region, South Africa. Samples of stormwater runoff from the different green roof systems on the eThekwini Green Roof Pilot Project were collected to test their level of contaminants and pollutants. The tests focused on all physical, aesthetic, chemical, and microbiological determinants pertaining to stormwater runoff. For all tests, the level of contaminants and pollutants were measured against the South African Water Quality Guidelines Volume 7 for Aquatic Ecosystems. The data revealed significant variations in pollutant concentrations between the green roofs and the conventional roof. Moreover, runoff water quality varied across the various roof types, which may indicate that the substrate composition has the greatest impact on green roof performance regarding rainwater quality. Overall, the results suggest that these green roof systems do not have the ability to filter pollutants out of stormwater runoff, but rather increase their levels of concentration.Item Neural network modelling and prediction of the flotation deinking behaviour of industrial paper recycling processes(Nordic Pulp & Paper Research Journal, 2014) Pauck, Walter James; Venditti, Richard; Pocock, Jon; Andrew, Jerome EdwardThe removal of ink from recovered papers by flotation deinking is considered to be the “heart” of the paper recycling process. Attempts to model the deinking flotation process from first principles has resulted in complex and not readily usable models. Artificial neural networks are adept at modelling complex and poorly understood phenomena. Based on data generated in a laboratory, artificial neural network models were developed for the flotation deinking process. Representative samples of recycled newsprint, magazines and fine papers were pulped and deinked by flotation in the laboratory, under a wide variety of practical conditions. The brightness, residual ink concentration and the yield were measured and used to train artificial neural networks. Regressions of approximately 0.95, 0.85 and 0.79 respectively were obtained. These models were validated using actual plant data from three different deinking plants manufacturing seven different grades of recycled pulp. It was found that the brightness and residual ink concentration could be predicted with correlations in excess of 0.9. Lower correlations of ca. 0.43 were obtained for the flotation yield. It is intended to use the data to develop predictive models to facilitate the management and optimization of commercial flotation deinking processes with respect to recycled paper inputs and process conditions.Item Prospects of synthesized magnetic TiO2-based membranes for wastewater treatment : a review(MDPI AG, 2021-06) Tetteh, E. Kweinor; Rathilal, S.; Asante-Sackey, D.; Chollom, Martha NoroGlobal accessibility to clean water has stressed the need to develop advanced technologies for the removal of toxic organic and inorganic pollutants and pathogens from wastewater to meet stringent discharge water quality limits. Conventionally, the high separation efficiencies, relative low costs, small footprint, and ease of operation associated with integrated photocatalytic-membrane (IPM) technologies are gaining an all-inclusive attention. Conversely, photocatalysis and membrane technologies face some degree of setbacks, which limit their worldwide application in wastewater settings for the treatment of emerging contaminants. Therefore, this review elucidated titanium dioxide (TiO2), based on its unique properties (low cost, non-toxicity, biocompatibility, and high chemical stability), to have great potential in engineering photocatalytic-based membranes for reclamation of wastewater for re-use. The environmental pathway of TiO2 nanoparticles, membranes and configuration types, modification process, characteristics, and applications of IPMs in water settings are discussed. Future research and prospects of magnetized TiO2-based membrane technology is highlighted as a viable water purification technology to mitigate fouling in the membrane process and photocatalyst recoverability. In addition, exploring life cycle assessment research would also aid in utilizing the concept and pressing for large-scale application of this technology.