Research Publications (Engineering and Built Environment)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/215
Browse
Search Results
Item Optimization of photo-catalytic degradation of oil refinery wastewater using Box-Behnken design(Korean Society of Environmental Engineers, 2019-02-15) Tetteh, Emmanuel Kweinor; Naidoo, Bisetty Dushen; Rathilal, SudeshThe application of advanced oxidation for the treatment of oil refinery wastewater under UV radiation by using nanoparticles of titanium dioxide was investigated. Synthetic wastewater prepared from phenol crystals; Power Glide SAE40 motor vehicle oil and water was used. Response surface methodology (RSM) based on the Box-Behnken Design was employed to design the experimental runs, optimize and study the interaction effects of the operating parameters including catalyst concentration, run time and airflow rate to maximize the degradation of oil (SOG) and phenol. The analysis of variance and the response models developed were used to evaluate the data obtained at a 95% confidence level. The use of the RSM demonstrated the graphical relationship that exists between individual factors and their interactive effects on the response, as compared to the one factor at time approach. The obtained optimum conditions of photocatalytic degradation are the catalyst concentration of 2 g/L, the run time of 30 min and the airflow rate of 1.04 L/min. Under the optimum conditions, a 68% desirability performance was obtained, representing 81% and 66% of SOG and phenol degradability, respectively. Thus, the hydrocarbon oils were readily degradable, while the phenols were more resistant to photocatalytic degradation.Item Response surface optimization of oil refinery wastewater treatment process(GRAWW, 2019-03) Rathilal, Sudesh; Tetteh, Emmanuel Kweinor; Assis, ShanIn this paper, a laboratory dissolved air flotation (DAF) process was employed for the removal of chemical oxidation demand (COD), soap oil and grease (SOG), total suspended solids (TSS) and turbidity from oil refinery wastewater (ORW) using polyferric sulfate. The optimization was carried out by response surface methodology Box-Behnken design to evaluate the interactive effects of three main independent process parameters (pH, coagulant dosage and flotation time) on the removal of the COD, SOG, TSS, and turbidity. The quadratic model fitted very well with the experimental data at regression coefficients (R2) of values of 0.9986; 0.9992; 0.9847; 0.9858 for COD, SOG, TSS, and turbidity respectively. Under the optimum conditions of coagulant dose of 48 mgL-1, pH (5) and flotation time (17 min), the maximum removal of COD, SOG, TSS, and turbidity were 86%, 92%, 84% and 85% respectively were obtained. The removal efficiencies showed a high significance of the model correlations at 95% confidence level. This demonstrated that the addition of the polymeric sulfate can enhance the treatability performance of the ORW.Item Treatment of water and wastewater for reuse and energy generation-emerging technologies(IntechOpen, 2019-04-25) Tetteh, Emmanuel Kweinor; Rathilal, Sudesh; Chetty, Maggie; Armah, Edward Kwaku; Asante-Sackey, DennisFresh water quality and supply, particularly for domestic and industrial purposes, are deteriorating with contamination threats on water resources. Multiple technologies in the conventional wastewater treatment (WWT) settings have been adopted to purify water to a desirable quality. However, the design and selection of a suitable cost-effective treatment scheme for a catchment area are essential and have many considerations including land availability, energy, effluent quality and operational simplicity. Three emerging technologies are discussed, including anaerobic digestion, advanced oxidation processes (AOPs) and membrane technology, which holds great promise to provide integrational alternatives for manifold WWT process and distribution systems to mitigate contaminants and meet acceptable limitations. The main applications, basic principles, merits and demerits of the aforementioned technologies are addressed in relation to their current limitations and future research needs in terms of renewable energy. Hence, the advancement in manufacturing industry along with WWT blueprints will enhance the application of these technologies for the sustainable management and conservation of waterItem Application of organic coagulants in water and wastewater treatment(IntechOpen, 2019-04-03) Tetteh, Emmanuel Kweinor; Rathilal, SudeshCoagulation is an essential mechanism that occurs in most conventional water and wastewater treatment plants. This occurs in a physical purification unit involving transport processes and the addition of coagulants for chemical reactions, charge neutralization, and formation of smaller flocs to agglomerate into larger flocs. This enhances the effective removal of recalcitrant contaminants by downstream processes. However, poor treatment of wastewater might have a high negative impact on biodiversity and the environment in general. This chapter seeks to address the limitation of employing inorganic coagulants by evaluating the efficiency of organic coagulants and exploring the factors and mechanism governing coagulation in a physiochemical treatment process of water and wastewater resources. The effect of pH, coagulant type and dosage to ease the high sludge production and discharge of residual metals into the downstream waters is addressed. The emerging of organic coagulants and technology to mitigate the performance and recovery of mineral coagulants from wastewater treatment residual is been proposed.