Research Publications (Engineering and Built Environment)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/215
Browse
Search Results
Item A resources allocation scheme for joint optical wireless transport networks(IEEE, 2023-08-03) Molefe, Mlungisi; Sibiya, Khulekani; Nleya, BakheAs the future of networking dives into a new era of connecting every single physical device into the internet termed Internet of Things (loT), this significantly means a rapid increase in the number of online connected devices, which leads to more bandwidth hungry and data consuming devices. The fifth generation (5G) of mobile communication has been deployed already in multiple countries, therefore researchers have migrated their focus to the sixth generation (6G) of mobile communication to cater for extensive coverage and massive number of loT devices. A promising architecture and technology to cope with massive number of online devices and extensive coverage is a joint optical wireless transport network which offers comparably ultra-high systems capacity and extremely low latency while maintaining an improved quality of service. Furthermore, an optical wireless transport network can accommodate high speed mobility for frequently moving end user devices which is essential for 6G. In this paper our focus is to explore and propose an ultimate optical wireless transport network architecture scheme that will cater for loT as well as networks beyond 5G. We thus propose an innovative Optical-Backhaul and Wireless Access (OBWA) network architecture as a favorable solution for future networks. We further present a joint channel and route allocation (JCRA) scheme for achieving optimal quality of experience. Performance evaluation of the proposed JCRA scheme for OBW A network architecture show a significant improvement in the network throughput as well as the network end-to-end delay despite varying load traffic or varying flow channels.Item Resources allocation for hybrid cloud-edge computing in 5G network slicing(TELKOM, 2023-09-01) Molefe, Mlungisi; Sibiya, Khulekani; Nleya, Bakhe; Smuts, Martin; Taute, AntonIn typical heterogeneous networks such as 5G and beyond, innovative technologies such as edge computing and network slicing can enhance overall network performance in terms of handling critical mission services as they often require extremely low latencies. Notably, network slicing facilitates the provisioning of virtual slices with different characteristics to serve different end-user requirements. The Network operator achieves this goal by utilizing the already existing physical wireless network resource. Current resource provisioning schemes suffer inadequacies in scalability and flexibility Thus to support both Cloud and Edge Computing in 5G and beyond networking, the work herein proposes a novel low latency scheme that affords dynamic and intelligent allocation of multi-dimensional resources. It bases on a Hybrid Cloud-edge Network Slicing (HCENS) architecture on leveraging both Cloud and Edge Computing The proposed scheme creates a flexible, scalable as well as energy efficient resource provisioning. Its architecture comprises both centralized units (CUs) and distributed units (DUs). These provide storage, that in turn enhances function partitioning for various network slices. Several agent-based simulations scenarios are carried out in evaluating the efficacy of the proposed scheme. Obtained analytical and simulation results indicate drastic reductions in network latencies for critical mission end user services. This couples with reductions in storage requirements.