Repository logo
 

Research Publications (Engineering and Built Environment)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/215

Browse

Search Results

Now showing 1 - 8 of 8
  • Item
    Barrier and biodegradable properties of corn starch-derived biopolymer film filled with nanoclay fillers
    (SAGE Publications, 2016-12-18) Mohan, T. P.; Devchand, Kay; Kanny, Krishnan
    The objective of this work is to study the effect of nanoclay fillers on the biodegradation and barrier properties of corn starch polymer-based biofilm. Starch derived from corn plant source was used to prepare a biofilm by plasticization method. The barrier properties, namely, water absorption, moisture permeation, oxygen permeation and swelling of unfilled and nanoclay-filled corn starch biofilms were examined. The results indicate: ∼22% reduced water absorption, 40% reduced moisture uptake, 30% reduced oxygen permeation and 31% reduced swelling for 2–3 wt.% nanoclay-filled biofilm, when compared with unfilled biopolymer. The biodegradation result of unfilled and nanoclay-filled film series indicates that the nanoclay addition delays the biodegradation and is a function of nanoclay content in the film. The tensile, dynamic mechanical analysis and biodegradable studies were conducted on the biopolymers before and after water absorption, and the result shows that the nanoclay-filled biopolymer increased these properties when compared with unfilled biopolymer even after water absorption and is dependent on the nanocomposite structure and morphology as examined by X-ray diffraction and transmission electron microscopy analysis.
  • Thumbnail Image
    Item
    Resin infusion analysis of nanoclay filled glass fiber laminates
    (Elsevier, 2013-11-13) Kanny, Krishnan; Mohan, T. P.
    This paper focuses on the resin flow characteristics of nanoclay filled glass fiber laminates processed by Vacuum Assisted Resin Infusion Molding (VARIM). Laminates with varying quantities of nanoclays (0–5 wt.%) were prepared and the effect of these nanoclays on the epoxy resin flow characteristics was studied. It was found that the flow rate of resin continuously decreased as nanoclay content continuously increased. The reduction in the flow rate was attributed to the rate of change of curing and the subse-quent change in viscosity of the nanoclay filled resin. Analysis of infusion process by Darcy’s law show that the permeability of the fiber decreased in the nanoclay filled resin system. Nanoclay filled laminates show improved static and dynamic mechanical properties than that of unfilled resin composites.
  • Thumbnail Image
    Item
    Infrared heating assisted thermoforming of polypropylene clay nanocomposites
    (Springer-Verlag, 2014-06-18) Mohan, T. P.; Kanny, Krishnan
    The objective of this work is to study the influence of nanoclay addition in PP sheet during infrared (IR) heating assisted thermoforming process. The effect of nanoclay on viscoelastic, friction and dimensional characteristics during sheet forming was examined. The result indicated that the nanoclay addition improves the sagging (sagging depth and sagging disintegration) and plugging (plug depth and friction) properties during sheet forming. The plugging properties of nanoclay filled PP sheet resulted in the improved physical characteristics (minimal change in thickness (Δt) and % di-mensional elongation) when compared with unfilled PP sheet. The nanoclay filled formed PP sheet resulted in improved tensile and dynamic mechanical properties when compared with unfilled formed PP sheet
  • Item
    Reuse of cured epoxy as a reinforcement in an epoxy composite
    (Wiley, 2013) Mohan, T. P.; Kanny, Krishnan
    This article discusses the reuse of a thermoset-based epoxy polymer. In this method, cured epoxy polymer is ground to powder of particle size ranging from 1 to 30 μm. The ground epoxy is then filled in an epoxy polymer to form an epoxy–epoxy composite system using both room and high temperature processing. The amount of filler material was varied from 1 to 10 wt% in the epoxy matrix. Rheology and tensile properties test were then performed. The result shows that the room temperature-processed epoxy composites (above 5 wt% of powders) resulted in the formation of voids, agglomeration of particles, and reduced degree of cure leading to a decrease in tensile properties. These drawbacks (voids, agglomeration, and low degree of cure) were correspondingly absent in composites processed at high temperature. Results from this work suggest that the thermoset polymer can be reused effectively with minimal changes to the unfilled resin properties. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers
  • Item
    Melt blend studies of nanoclay-filled polypropylene (PP)–high- density polyethylene (HDPE) composites
    (Springer, 2013) Mohan, T. P.; Kanny, Krishnan
    The objective of this work is to study how the rheological factors of unfilled and nanoclay-filled HDPE– PP blend series influence the structure, morphology, and mixing characteristics. For this study, a series of HDPE–PP blends (0–100 wt % HDPE), with and without nanoclay, was prepared by using melt-mixing method. Nanoclay was varied from 0 to 5 wt % in all the blend and polymer series. The rheological properties were examined by melt viscosity, scanning electron microscopy, and theory of mixing. The result indicated that the viscosity of the blend increased as HDPE and nanoclay content increased, and also affected the structure and morphology of the resulting blend. The thermal properties were examined by using differential scanning calorimetry and suggest improved crystalline and melting characteristics of PP and PP-rich phase of blend. The structure of nanoclay-filled blend was examined by X-ray diffraction and transmission electron microscopy, confirming the formation of nanocomposite with improved tensile properties.
  • Thumbnail Image
    Item
    Machinability study of hybrid nanoclay-glass fibre reinforced polyester composites
    (2013) Prabhu, P.; Jawahar, P.; Balasubramanian, M.; Mohan, T. P.
    Glass fibre reinforced polyester composites (GRP) and hybrid nanoclay and glass fibre reinforced polyester nanocomposites (CGRP) are fabricated by vacuum assisted resin infusion technique. The optimum mechanical properties are obtained for CGRP with 3 wt.% nanoclay. Three types of drills (carbide twist drill D 5407060, HSS twist drill BS-328, and HSS end mill (4 flutes “N”-type end mill RH-helical flute)) of 6 mm diameters are used to drill holes on GRP and CGRP. Three different speeds (600, 852, and 1260 rpm) and two different feeds (0.045, 0.1 mm/rev) are selected as process parameters. The effect of process parameter on thrust force and delamination during drilling CGRP is analyzed for optimizing the machining parameters. The delamination factor is low for the optimum process parameter (feed = 0.1 mm/rev and speed 852 rpm). Microstructural analysis confirms that at higher feeds, delamination is low for CGRP drilled with carbide tools. In order to analyze the effect of nanoclay in CGRP on tool wear, 200 holes were drilled on CGRP samples with 3 wt.% nanoclay, and the tool wear is analyzed under optimized parametric condition. Tool wear is high in HSS twist drill compared with carbide drill. The presence of nanoclay also accelerates the tool wear.
  • Item
    Chemical treatment of sisal fiber using alkali and clay method
    (Elsevier, 2012-07-24) Mohan, T. P.; Kanny, Krishnan
    In this study the chemical treatment of sisal fiber using the combined alkali (NaOH) and clay is discussed. The purpose of this fiber treatment is to improve the fiber–matrix compatibility, interface strength, mechanical, thermal and water barrier properties. The phase change due to chemical treatment of raw sisal fiber was examined by Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) methods. The result shows the presence of about 20 wt.% clays in NaOH–clay treated sisal fiber with 2.6 reduced water uptake and also with improved mechanical and thermal properties. Subsequently the treated and untreated fibers were reinforced in polypropylene (PP) matrix and the mechanical and thermal properties were examined. The result indicates that the fiber–matrix interface strength, adhesion, glass transition temperature and tensile properties of composites were improved in NaOH–clay treated fiber composites.
  • Item
    Effect of nanoclay in HDPE–glass fiber composites on processing, structure, and properties
    (Taylor and Francis, 2012-10-23) Mohan, T. P.; Kanny, Krishnan
    Natural Na+ montmorillonite (MMT) microclay and organo-treated MMT nanoclay were independently filled in a high-density polyethylene (HDPE) polymer and HDPE–glass fiber (GF) composite and the rheological and mechanical properties were examined. The addition of nanoclay in the HDPE polymer and HDPE–GF composite increased the melt viscosity, rate of crystallization, and crystalline fraction. Addition of Na+ MMT clay on the other hand did not affect the crystalline properties, but increased the melt viscosity marginally. The composite was also examined after the addition of a polyethylene-grafted maleic anhydride-based compatibilizer. It was found that the compatibilizer improved the dispersion of clay particles in the polymer matrix which in turn affected the rheological and mechanical properties of the composite. Improved tensile and wear properties were observed in nanoclay-filled composites when compared to microclay-filled composites.