Research Publications (Engineering and Built Environment)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/215
Browse
4 results
Search Results
Item An adaptive neuro-fuzzy inference scheme for defect detection and classification of solar Pv cells(Academy Publishing Center, 2024-09-12) Moyo, Ranganai Tawanda; Dewa, Mendon; Romero, Héctor Felipe Mateo; Gómez, Victor Alonso; Aragonés, Jose Ignacio Morales; Hernández-Callejo, LuisThis research paper presents an innovative approach for defect detection and classification of solar photovoltaic (PV) cells using the adaptive neuro-fuzzy inference system (ANFIS) technique. As solar energy continues to be a vital component of the global renewable energy mix, ensuring the reliability and efficiency of PV systems is paramount. Detecting and classifying defects in PV cells are crucial steps toward ensuring optimal performance and longevity of solar panels. Traditional defect detection and classification methods often face challenges in providing precise and adaptable solutions to this complex problem. In this study the researchers pose an ANFIS-based scheme that combines the strengths of neural networks and fuzzy logic to accurately identify and classify various types of defects in solar PV cells. The adaptive learning mechanism of ANFIS enables the model to continuously adapt to changes in operating conditions ensuring robust and reliable defect detection capabilities. The ANFIS model was developed and implemented using MATLAB and a high predicting accuracy was achieved.Item The role of computational intelligence techniques in the advancements of solar photovoltaic systems for sustainable development : a review(Arab Academy for Science, Technology, and Maritime Transport (AASTMT), 2022) Moyo, Ranganai Tawanda; Dewa, MendonThe use of computational intelligence (CI) in solar photovoltaic (SPV) systems has been on the rise due to the increasing computational power, advancements in power electronics and the availability of data generation tools. CI techniques play an important role in modelling, sizing, forecasting, optimizing, analysing and predicting the performance and control of SPV systems. Thus, CI techniques have become an essential technology as the energy sector seeks to meet the rapidly increasing demand for clean, cheap, and reliable energy. In this context, this review paper aims to investigate the role of CI techniques in the advancements of SPV systems. The study includes the involvement of CI techniques for parameter identification of solar cells, PV system sizing, maximum power point tracking (MPPT), forecasting, fault detection and diagnosis, inverter control and solar tracking of SPV systems. A performance comparison between CI techniques and conventional methods is also carried out to prove the importance of CI in SPV systems. The findings confirmed the superiority of CI techniques over conventional methods for every application studied and it can be concluded that the continuous improvements and involvement of these techniques can revolutionize the SPV industry and significantly increase the adoption of solar energy.Item Applications of artificial intelligence to photovoltaic systems : a review(MDPI AG, 2022) Mateo Romero, Héctor Felipe Mateo; González Rebollo, Miguel Ángel González; Cardeñoso-Payo, Valentín; Alonso Gómez, Victor Alonso; Redondo Plaza, Alberto Redondo; Moyo, Ranganai Tawanda; Hernández-Callejo, LuisThis article analyzes the relationship between artificial intelligence (AI) and photovoltaic (PV) systems. Solar energy is one of the most important renewable energies, and the investment of businesses and governments is increasing every year. AI is used to solve the most important problems found in PV systems, such as the tracking of the Max Power Point of the PV modules, the forecasting of the energy produced by the PV system, the estimation of the parameters of the equivalent model of PV modules or the detection of faults found in PV modules or cells. AI techniques perform better than classical approaches, even though they have some limitations such as the amount of data and the high computation times needed for performing the training . Research is still being conducted in order to solve these problems and find techniques with better performance. This article analyzes the most relevant scientific works that use artificial intelligence to deal with the key PV problems by searching terms related with artificial intelligence and photovoltaic systems in the most important academic research databases. The number of publications shows that this field is of great interest to researchers. The findings also show that these kinds of algorithms really have helped to solve these issues or to improve the previous solutions in terms of efficiency or accuracy.Item Comparative analysis of different computational intelligence techniques for maximum power point tracking of PV systems(University of Oradea, 2022-10-01) Moyo, Ranganai Tawanda; Tabakov, Pavel Y.; Moyo, SibusisoThe performance of a photovoltaic (PV) module can be improved by employing maximum power point tracking (MPPT) controllers. MPPT controllers are algorithms that are included in PV battery charge controllers or inverters to extract the maximum available power from PV modules for any given temperature and irradiance. Several studies report that the use of PV modules without MPPT controllers results in power losses, which ultimately results in the need to install more solar panels for the same power requirement. Numerous techniques of varying complexities have been proposed in the literature to solve the MPPT objective function. This paper presents a comparative analysis of three computational intelligence (CI) based MPPT techniques namely, the fuzzy logic (FL) based controller, artificial neural networks (ANN) based controller, adaptive neuro-fuzzy inference system (ANFIS) based controller and one conventional technique, the perturbation and observation (P&O) controller. These MPPT controllers are designed, simulated and analysed in the MATLAB/Simulink environment. The performance of the studied MPPT techniques is evaluated under steady-state weather conditions, rapidly changing weather conditions and varying load conditions. CI-based MPPT controllers are found to be more efficient than the P&O controller. Moreover, the ANFIS-based MPPT controller shows an outstanding MPPT performance for all the scenarios studied.