Repository logo
 

Research Publications (Engineering and Built Environment)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/215

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    A taxonomy on smart healthcare technologies : security framework, case study, and future directions
    (Hindawi Limited, 2022-07-05) Chaudhary, Sachi; Kakkar, Riya; Jadav, Nilesh Kumar; Nair, Anuja; Gupta, Rajesh; Tanwar, Sudeep; Agrawal, Smita; Alshehri, Mohammad Dahman; Sharma, Ravi; Sharma, Gulshan; Davidson, Innocent E.
    There is a massive transformation in the traditional healthcare system from the specialist-centric approach to the patient-centric approach by adopting modern and intelligent healthcare solutions to build a smart healthcare system. It permits patients to directly share their medical data with the specialist for remote diagnosis without any human intervention. Furthermore, the remote monitoring of patients utilizing wearable sensors, Internet of Things (IoT) technologies, and artificial intelligence (AI) has made the treatment readily accessible and affordable. However, the advancement also brings several security and privacy concerns that poorly maneuvered the effective performance of the smart healthcare system. An attacker can exploit the IoT infrastructure, perform an adversarial attack on AI models, and proliferate resource starvation attacks in smart healthcare system. To overcome the aforementioned issues, in this survey, we extensively reviewed and created a comprehensive taxonomy of various smart healthcare technologies such as wearable devices, digital healthcare, and body area networks (BANs), along with their security aspects and solutions for the smart healthcare system. Moreover, we propose an AI-based architecture with the 6G network interface to secure the data exchange between patients and medical practitioners. We have examined our proposed architecture with the case study based on the COVID-19 pandemic by adopting unmanned aerial vehicles (UAVs) for data exchange. The performance of the proposed architecture is evaluated using various machine learning (ML) classification algorithms such as random forest (RF), naive Bayes (NB), logistic regression (LR), linear discriminant analysis (LDA), and perceptron. The RF classification algorithm outperforms the conventional algorithms in terms of accuracy, i.e., 98%. Finally, we present open issues and research challenges associated with smart healthcare technologies
  • Thumbnail Image
    Item
    Fusion in cryptocurrency price prediction: a decade survey on recent advancements, architecture, and potential future directions
    (Institute of Electrical and Electronics Engineers (IEEE), 2022) Patel, Nisarg P.; Parekh, Raj; Thakkar, Nihar; Gupta, Rajesh; Tanwar, Sudeep; Sharma, Gulshan; Davidson, Innocent E.; Sharma, Ravi
    Cryptographic forms of money are distributed peer-to-peer (P2P) computerized exchange mediums, where the exchanges or records are secured through a protected hash set of secure hash algorithm-256 (SHA-256) and message digest 5 (MD5) calculations. Since their initiation, the prices seem highly volatile and came to their amazing cutoff points during the COVID-19 pandemic. This factor makes them a popular choice for investors with an aim to get higher returns over a short span of time. The colossal high points and low points in digital forms of money costs have drawn in analysts from the scholarly community as well as ventures to foresee their costs. A few machines and deep learning algorithms like gated recurrent unit (GRU), long short-term memory (LSTM), autoregressive integrated moving average with explanatory variable (ARIMAX), and a lot more have been utilized to exactly predict and investigate the elements influencing cryptocurrency prices. The current literature is totally centered around the forecast of digital money costs disregarding its reliance on other cryptographic forms of money. However, Dash coin is an individual cryptocurrency, but it is derived from Bitcoin and Litecoin. The change in Bitcoin and Litecoin prices affects the Dash coin price. Motivated from these, we present a cryptocurrency price prediction framework in this paper. It acknowledges different cryptographic forms of money (which are subject to one another) as information and yields higher accuracy. To illustrate this concept, we have considered a price prediction of Dash coin through the past days’ prices of Dash, Litecoin, and Bitcoin as they have hierarchical dependency among them at the protocol level. We can portray the outcomes that the proposed scheme predicts the prices with low misfortune and high precision. The model can be applied to different digital money cost expectations.
  • Thumbnail Image
    Item
    Coalition games for performance evaluation in 5G and beyond networks : a survey
    (Institute of Electrical and Electronics Engineers (IEEE), 2022) Singh, Upendra; Ramaswamy, Aditya; Dua, Amit; Kumar, Neeraj; Tanwar, Sudeep; Sharma, Gulshan; Davidson, Innocent E.; Sharma, Ravi
    The 5G network is an emerging field of the research community. 5G is a multi-disciplinary network that aims to support a wide range of services. 5G network has an objective to support a massive number of connected devices. Game theory has an extensive role in wireless network management. Game theory is an approach to analyzing and modeling the system where multiple actors have a role in decisionmaking with independent objectives and actions. The game theory is an exciting methodology to control the strategic behavior of players and generate an efficient outcome. Coalition game theory can play a crucial role in ensuring cooperation among a massive number of devices. This article provides insight into the current research trends in 5G using coalition games. The work presented in the survey is divided into three categories, namely resource management, interference management, and miscellaneous. This article also provides the foundation about 5G and coalition games highlight the scope of future research.