Research Publications (Engineering and Built Environment)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/215
Browse
3 results
Search Results
Item Isothermal method for hydrate studies using a transparent variable volume cell(AIP Publishing, 2014-04) Ngema, P. T.; Nelson, W. M.; Naidoo, P.; Ramjugernath, D.; Richon, D.The measurements of hydrate dissociation points are generally achieved using the well-established isochoric method. This method implies determination of the total pressure of the system under study, as a function of temperature. It is quite time consuming, especially at higher pressures. Working at higher pressures requires equilibrium cells with thicker walls, which compromises on fast heat exchange. The use of a variable volume cell is therefore quite attractive as it allows for the measurements of hydrate dissociation pressure under isothermal conditions. This paper describes a transparent variable volume cell used for efficient and rapid measurements via the isothermal procedure.Item Modeling of double stage photovoltaic inverter system with fast delayed signal cancellation for fault ride-through control application in microgrids(MDPI AG, 2022-02) Buraimoh, Elutunji; Davidson, Innocent E.This research presents a secondary control for a grid-supporting microgrid with photovoltaics sources to guarantee grid code compliance and ancillary services. The secondary control accomplishes the fault ride-through, which implements a delayed signal cancellation (DSC) algorithm for negative sequence detection. Without mode switching, the proposed control strategy meets grid code requirements and ensures voltage regulation at the secondary level, which is active and more salient throughout the transient period of host grid disturbances. This control also ensures a constant supply of the microgrid’s sensitive local load while adhering to grid code requirements. Similarly, active power injection into the main grid is limited by progressively altering the MPPT operating point dependent on the depth of voltage sag to optimize reactive power injection to sustain grid voltage sag. The recommended secondary control is triggered by utilizing the DSC process’s detection algorithm to identify the occurrence of a fault in a tiny fraction of a half-cycle in a grid fault. Consequently, while satisfying microgrid load needs, the devised technique guaranteed that increases in DC-link voltage and AC grid current were controlled. MATLAB Simscape ElectricalTM and OPAL-RT Lab are used to do time-domain simulations of the model using the recommended secondary control systems.Item Modelling of solar PV under varying condition with an improved incremental conductance and integral regulator(MDPI AG, 2022-04-01) Stephen, Akinyemi Ayodeji; Musasa, Kabeya; Davidson, Innocent EwaenThe introduction of solar photovoltaic (PV) systems would provide electricity accessibility to rural areas that are far from or have no access to the grid system. Various countries are planning to reduce their emissions from fossil fuel, due to its negative effects, by substituting with renewable energy resources. The use of solar PV systems is expanding globally because of growing energy demands and depleting fossil fuel reserves. Grid integration of the solar system is expected to increase further in the near future. However, the power output of solar PV systems is inherently intermittent, and depends on the irradiance and the temperature operation of the solar cell, resulting in a wide range of defects. Hence, it is vital to extract peak power from the solar panel in all conditions to provide constant power to the load. This paper presents a tracking control method of the peak output power of a solar PV system connected to a DC-DC boost converter using an improved incremental conductance and integral regulator (IC + IR). The research was carried out because the solar PV output is dependent on environmental parameters, such as solar insolation and temperature. Therefore, it is pertinent to forecast the peak power point in outdoor conditions and to operate at that point, so that solar PV can produce the highest output each time it is used. A peak power point strategy that maximizes the output of a solar PV array is proposed. This method establishes the maximum output operation point under the effects of the solar insolation and the module temperature. An automatic converter restoration scheme with block/de-block signal control is proposed to protect the converters from the higher phase current, total capacitor voltage deviation, grid disturbance, and fault current. The proposed scheme also tracks the peak power point (PPP) of the solar array with stable output voltage under varying operating conditions. It reduces the error signal and ripples at the PPP during instantaneous and incremental conductance to zero. In addition, it controls the solar PV system under constantly changing climatic conditions, and thus improves the system efficiency.