Research Publications (Applied Sciences)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213
Browse
2 results
Search Results
Item Crystallography, molecular modeling, and COX-2 inhibition studies on indolizine derivatives(MDPI AG, 2021-06) Venugopala, Katharigatta N.; Chandrashekharappa, Sandeep; Tratrat, Christophe; Deb, Pran Kishore; Nagdeve, Rahul D.; Nayak, Susanta K.; Morsy, Mohamed A.; Borah, Pobitra; Mahomoodally, Fawzi M.; Mailavaram, Raghu Prasad; Attimarad, Mahesh; Aldhubiab, Bandar E.; Sreeharsha, Nagaraja; Nair, Anroop B.; Alwassil, Osama I.; Haroun, Michelyne; Mohanlall, Viresh; Shinu, Pottathil; Venugopala, Rashmi; Kandeel, Mahmoud; Nandeshwarappa, Belakatte P.; Ibrahim, Yasmine F.The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a–e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, β = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.Item Larvicidal Activities of 2-Aryl-2,3-Dihydroquinazolin-4-ones against Malaria Vector Anopheles arabiensis, in Silico ADMET prediction and molecular target investigation(MDPI, 2020-03-02) Venugopala, Katharigatta Narayanaswamy; Ramachandra, Pushpalatha; Tratrat, Christophe; Gleiser, Raquel M.; Bhandary, Subhrajyoti; Chopra, Deepak; Morsy, Mohamed A.; Aldhubiab, Bandar E.; Attimarad, Mahesh; Nair, Anroop B.; Sreeharsha, Nagaraja; Venugopala, Rashmi; Deb, Pran Kishore; Chandrashekharappa, Sandeep; Khalil, Hany Ezzat; Alwassil, Osama I.; Abed, Sara Nidal; Bataineh, Yazan A.; Palenge, Ramachandra; Haroun, Michelyne; Pottathil, Shinu; Girish, Meravanige B.; Akrawi, Sabah H.; Mohanlall, VireshMalaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.