Research Publications (Applied Sciences)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213
Browse
Search Results
Item Isotropic perfect fluids in modified gravity(MDPI AG, 2023-01) Naicker, Shavani; Maharaj, Sunil D.; Brassel, Byron P.We generate the Einstein–Gauss–Bonnet field equations in higher dimensions for a spherically symmetric static spacetime. The matter distribution is a neutral fluid with isotropic pressure. The condition of isotropic pressure, an Abel differential equation of the second kind, is transformed to a first order nonlinear canonical differential equation. This provides a mechanism to generate exact solutions systematically in higher dimensions. Our solution generating algorithm is a different approach from those considered earlier. We show that a specific choice of one potential leads to a new solution for the second potential for all spacetime dimensions. Several other families of exact solutions to the condition of pressure isotropy are found for all spacetime dimensions. Earlier results are regained from our treatments. The difference with general relativity is highlighted in our study.Item Charged fluids in higher order gravity(Springer Science and Business Media LLC, 2023-04-28) Naicker, Shavani; Maharaj, Sunil D.; Brassel, Byron P.We generate the field equations for a charged gravitating perfect fluid in Einstein–Gauss–Bonnet gravity for all spacetime dimensions. The spacetime is static and spherically symmetric which gives rise to the charged condition of pressure isotropy that is an Abel differential equation of the second kind. We show that this equation can be reduced to a canonical differential equation that is first order and nonlinear in nature, in higher dimensions. The canonical form admits an exact solution generating algorithm, yielding implicit solutions in general, by choosing one of the potentials and the electromagnetic field. An exact solution to the canonical equation is found that reduces to the neutral model found earlier. In addition, three new classes of solutions arise without specifying the gravitational potentials and the electromagnetic field; instead constraints are placed on the canonical differential equation. This is due to the fact that the presence of the electromagnetic field allows for a greater degree of freedom, and there is no correspondence with neutral matter. Other classes of exact solutions are presented in terms of elementary and special functions (the Heun confluent functions) when the canonical form cannot be applied.Item Charged dust in Einstein–Gauss–Bonnet models(Springer Science and Business Media LLC, 2023-10) Naicker, Shavani; Maharaj, Sunil D.; Brassel, Byron P.We investigate the influence of the higher order curvature terms on the static configuration of a charged dust distribution in EGB gravity. The EGB field equations for such a fluid are generated in higher dimensions. The governing equation can be written as an Abel differential equation of the second kind, or a second order linear differential equation. Exact solutions are found to these equations in terms of special functions, series and polynomials. The Abel differential equation of the second kind is reducible to a canonical differential equation; three new families of solutions are found by constraining the coefficients of the canonical equation. The charged dust model is shown to be physically well behaved in a region at the centre, and dust spheres can be generated. The higher order curvature terms influence the dynamics of charged dust and the gravitational behaviour which is distinct from general relativity.