Repository logo
 

Research Publications (Applied Sciences)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Sulfonic acid functionalized boron nitride nano materials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives
    (Elsevier, 2017) Murugesan, Arul; Gengan, Robert Moonsamy; Anand, Krishnan
    Boron nitride nano material based solid acid catalyst was found to be an efficient and reusable sulfonic acid catalyst for the synthesis of one-pot Knoevenagel and Michael type reactions in 3, 3-dimethyl-9-(2-(4-methylpiperazin-1-yl) quinolin-3-yl)-3, 4, 9, 10-tetrahydroacridin-1(2H)-one derivatives under mi-crowave irradiation conditions. The catalyst was prepared by mixing boron nitrile and (3-mercaptopropyl) trimethoxysilane. This is simple and safe method for the preparation of solid acid catalysts. The morphological properties of catalyst determined by using FT-IR, XRD, TEM, SEM and Raman spectroscopy. The synthesised catalyst was employed in Knoevenagel and Michael type reactions to synthesise novel piperazinyl-quinolinyl based acridine derivatives. Furthermore the newly-synthesised compounds have been used for molecular docking in DNA binding studies. The method developed in this study has the advantages of good yield, simplicity coupled with safety and short reaction time. Most importantly it was found that the solid acid catalyst can be recycled with only 5% loss of activity.
  • Item
    Cobalt boron nitride : a novel heterogeneous catalyst for the synthesis of medicinally important α-amino quinoline phosphonates
    (Taylor and Fancis, 2016) Sureshkumar, M; Anand, Krishnan; Muthu, T.; Gengan, Robert Moonsamy
    A novel cobalt supported on boron nitride (CoBNT) heterogeneous catalyst for the synthesis of α-amino quinoline phosphonates (AQPs) is reported in the present work. The CoBNT was synthesised by simply mix-ing boron nitride in a solution of cobalt acetate, under an inert atmosphere for 7 d followed by filtration; the yield was 94%. It exhibited excellent catalytic properties for the synthesis of 16 novel AQPs in a one pot mixture containing 2-methoxy 3-formyl quinoline, aniline derivatives and diethyl phosphite. Reactions were rapid, products were easily worked-up and were obtained in more than 90% yield. The CoBNT also exhibited higher catalytic activity than conventional catalysts and was re-used five times without significant decrease in catalytic activity.