Repository logo
 

Research Publications (Applied Sciences)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst
    (Elsevier, 2016) Guldhe, Abhishek; Singh, Poonam; Kumari, Sheena K.; Rawat, Ismail; Permaul, Kugen; Bux, Faizal
    Whole cell lipase catalysis and microalgal feedstocks make overall biodiesel synthesis greener and sustainable. In this study, a novel approach of whole cell lipase-catalyzed conversion of Scenedesmus obliquus lipids was investigated for biodiesel synthesis. Microalgal biodiesel was characterized for its fuel properties. Optimization of process parameters for immobilized Aspergillus niger whole cell lipase-catalyzed biodiesel synthesis was carried out. Highest biodiesel conversion of 53.76% was achieved from S. obliquus lipids at 35 °C, methanol to oil ratio of 5:1 and 2.5% water content based on oil weight with 6 BSPs (Biomass support particles). Step-wise methanol addition was applied to account for methanol tolerance, which improved biodiesel conversion upto 80.97% and gave 90.82 ± 1.43% yield. Immobilized A. niger lipase can be used for 2 batches without significant loss in conversion efficiency. Most of the fuel properties of biodiesel met the specifications set by international standards.
  • Item
    Advances in synthesis of biodiesel via enzyme catalysis : Novel and sustainable approaches
    (Elsevier, 2015-01) Singh, Bhaskar; Mutanda, Taurai; Permaul, Kugen; Bux, Faizal; Guldhe, Abhishek
    Biodiesel, a renewable fuel has a great potential in fulfilling an ever-increasing transport fuel demand. The enzymatic conversion process of feedstock oil to biodiesel is greener when compared to the conventional approach of chemical conversion due to mild reaction conditions and less wastewater generation. Lipases obtained from various microbial sources have been widely applied as catalysts for the conversion of oil to biodiesel. Biodiesel and glycerol obtained by enzymatic conversion have shown a higher purity as compared to that obtained by other conversion techniques. Enzymatic conversion of oil to biodiesel is less energy intensive because of milder reaction conditions and fewer purification steps involved in processing. Lipases, due to their catalytic efficiency and specificity, have emerged as a great tool for converting a wide range of feedstock oils to biodiesel. This manuscript presents an overview of the use of enzymatic conversion for making biodiesel production sustainable and environmentally-friendly. The constraints of enzymatic conversion are the high cost of the enzyme and its inhibition by alcohol and glycerol. The possible solutions to overcome these constraints are discussed. Recent advances to develop an effective process for enzymatic conversion of feedstock oils into biodiesel are critically evaluated. Prospective and challenges in scaling up of this technology are also discussed.