Repository logo
 

Research Publications (Applied Sciences)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Microbial production of phytases for combating environmental phosphate pollution and other diverse applications
    (Taylor and Fancis Online, 2016) Kumar, Ashwani; Chanderman, Ashira; Makolomakwa, Melvin; Perumal, Kugen; Singh, Suren
    Concerns of phosphorus pollution and its impact on environments have driven the biotechnological development of phytases. Phosphoric acid, inositol phosphate, or inositols are produced after hydrolysis of phosphate from phytate, initiated by phytase. Research over the last two decades on microbial phytases has deepened our understanding of their production, optimization, and characterization. Despite the wide availability of phytase producing microorganisms, only a few have been commercially exploited. The current high cost of phytases, inability to withstand high temperatures (>85 C), a limited pH range, and poor storage stability are a major bottleneck in the commercialization of phytases. The development of novel phytases with optimal properties for various applications is a major research challenge. In this paper, recent advances in microbial phytase production, application of tools to optimize higher enzyme production, and characterization of phytases along with potential biotechnological applications are reviewed. Additionally the development of phytase assay methods and functions of phytate and phytate degradation products are discussed.
  • Item
    Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase
    (Elsevier, 2015-01-31) Guldhe, Abhishek; Singh, Bhaskar; Rawat, Ismail; Perumal, Kugen; Bux, Faizal
    Conversion of microalgal lipids using biocatalyst is a novel and greener approach to produce biodiesel. Free and immobilized lipases from Candida sp. and Pseudomonas fluorescens along with free lipases from porcine pancreas and wheat germ were screened for biodiesel conversion of Scenedesmus obliquus lipids. Among selected lipases from various sources immobilized lipase from P. fluorescens showed superior biodiesel conversion. Optimization of reaction parameters viz. lipase amount, temperature, methanol to oil molar ratio and water content was carried out using response surface methodology. Best conversion of 66.55% was achieved at 35 °C, methanol to oil ratio of 3:1 with 10% enzyme amount and 2.5% water content based on oil weight. To tackle methanol tolerance step-wise methanol addition was applied, which improved biodiesel conversion upto 90.81%. Immobilized P. fluorescens lipase can be used for 4 batches without much loss in conversion efficiency (>95%). Biodiesel produced has the cetane number of 51.77, Calorific value of 37.67 MJ kg−1. Most of the fuel properties of biodiesel met the specifications set by ASTM and EN standards.