Repository logo
 

Research Publications (Applied Sciences)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Application of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid for the different types of separations problem: Activity coefficients at infinite dilution measurements using gas-liquid chromatography technique
    (Elsevier, 2016) Singh, Sangeeta; Bahadur, Indra; Naidoo, Paramespri; Ramjugernath, Deresh
    The present work focussed on application of the environmental friendly 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([BMIM]+[Tf2N]−) ionic liquid for the separations of (alkane/aromatic), (al-kane/alk-1-ene), (cycloalkane/aromatic) and (water/alkan-1-ol) using gas-liquid chromatography (GLC) tech-nique. In this reason the activity coefficients at infinite dilution, γ∞13, for 31 organic solutes (alkanes, cycloalkanes, alkenes, alkynes, aromatics, alkanol and ketones) and water in ionic liquid were measured at temper-atures of (323.15, 333.15, 343.15, 353.15 and 363.15) K. Stationary phase loadings of (42.83 and 68.66) % by mass were used to ensure repeatability of measurements. Density and viscosity values were measured to confirm the purity of ionic liquid. Partial molar excess enthalpies at infinite dilution, ΔH1,∞, were also determined. The selectiv-ities, Sij∞, and capacities, kj∞, were determined for the above separations. The separating ability of the investigated ionic liquid was compared with previously investigated ionic liquids and industrial solvents such as sulfolane, n-methyl-2-pyrrolidine (NMP) and n-formylmorpholine (NFM).
  • Item
    Density and speed of sound of 1-ethyl-3-methylimidazolium ethyl sulphate with acetic or propionic acid at different temperatures
    (Elsevier, 2014-11) Singh, Sangeeta; Bahadur, Indra; Redhi, Gan G.; Ramjugernath, Deresh; Ebenso, Eno, E.
    In this work, new density, ρ, and speed of sound, u, were measured for IL, acetic acid, propionic acid, and their binary systems {IL (x1) + acetic or propionic acid (x2)} at 293.15, 298.15, 303.15, 308.15 and 313.15 K under at-mospheric pressure. The IL used in this study was 1-ethyl-3-methylimidazolium ethyl sulphate ([EMIM]+[EtSO4]−). The derived properties such as excess molar volumes, Vm, isentropic compressibility, κs, and deviation in isentropic compressibility, Δκs, were calculated using experimental density and speed of sound data, respectively. Derived properties such as excess molar volumes, Vm, and deviation in isentropic com-pressibility, Δκs, data were fitted to the Redlich–Kister polynomial equation. The measured and calculated data were interpreted on the basis of intermolecular interactions and structural effects between like and unlike mol-ecules upon mixing.
  • Thumbnail Image
    Item
    Excess molar volumes of binary mixtures (an ionic liquid + water) : A review
    (Elsevier, 2015-03) Bahadur, Indra; Singh, Sangeeta; Redhi, Gan G.; Venkatesu, Pannuru; Letcher, Trevor M.
    This review covers recent developments in the area of excess molar volumes for mixtures of {ILs (1) + H2O (2)} where ILs refers to ionic liquids involving cations: imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium and ammonium groups; and anions: tetraborate, triflate, hydrogensulphate, methylsulphate, ethylsulphate, thiocyanate, dicyanamide, octanate, acetate, nitrate, chloride, bromide, and iodine. The excess molar volumes of aqueous ILs were found to cover a wide range of values for the different ILs (ranging from −1.7 cm3 · mol−1 to 1.2 cm3 · mol−1). The excess molar volumes increased with increasing temperature for all systems studied in this review. The magnitude and in some cases the sign of the excess molar volumes for all the aqueous ILs mixtures, apart from the ammonium ILs, were very dependent on temperature. This was particularly important in the dilute IL concentration region. It was found that the sign and magnitude of the excess molar volumes of aqueous ILs (for ILs with hydrophobic cations), was more dependent on the nature of the anion than on the cation.
  • Thumbnail Image
    Item
    Effect of temperature on density, sound velocity, refractive index and their derived properties for the binary systems (heptanoic acid + propanoic or butanoic acids)
    (Elsevier, 2014-06-14) Bahadur, Indra; Naidoo, Paramespri; Singh, Sangeeta; Ramjugernath, Deresh; Deenadayalu, Nirmala
    In this work, the effect of temperature on density (q), sound velocity (u), refractive index (n) and their derived properties for carboxylic acid mixtures was studied. The thermophysical properties: density, sound velocity and refractive index were measured over the entire composition range at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K and at p = 0.1 MPa for the binary systems (heptanoic acid + propa-noic or butanoic acids). The mass fraction of water was found to be unusually large and could not be reduced further. The Lorentz–Lorenz approximation was used to predict the density from refractive index or the refractive index from density of the binary mixtures. Sound velocity mixing rules were applied to the experimental sound velocity data. Excess molar volumes, VEm; isentropic compressibilities, js, excess isentropic compressibilities, jsE, and deviation in refractive indices, Dn, were also calculated from the experimental data. The Redlich–Kister polynomial equation was fitted to the excess properties and the deviation in refractive index data. Thermophysical properties are useful in understanding the intermolecular interactions between the components of mixtures.
  • Thumbnail Image
    Item
    Influence of alkyl group and temperature on thermophysical properties of carboxylic acid and their binary mixtures
    (Elsevier B.V., 2014-06-30) Bahadur, Indra; Deenadayalu, Nirmala; Naidoo, Paramespri; Ramjugernath, Deresh; Singh, Sangeeta
    n this work, volumetric, acoustic and refractive index methods have been used to study the interactions between carboxylic acids mixtures as a function of temperature and concentration. The density (r), sound velocity (u), refractive index (n) of butanoic acid, pentanoic acid and heptanoic acid and their binary systems (butanoic or heptanoic acid + pentanoic acid) have been measured at 293.15, 298.15, 303.15, 308.15 and 313.15 K and at p = 0.1 MPa. The Lorentz–Lorenz approximation and sound velocity mixing rules were used to test the accuracy of the experimental data. The derived properties such as excess molar volumes, VEm, isentropic compressibilities, ks, excess isentropic compressibilities, ksE, and deviation in refractive indices, Dn, were also calculated. The Redlich–Kister polynomial equation was used to fit the excess/deviation properties. These results are useful for describing the intermolecular interactions that exist between the components in mixtures. This work also tests various sound velocity mixing rules to calculate the sound velocity of the binary mixture from pure component data, as well as examine the use of the Lorentz–Lorenz approximation to predict density from refractive index and vice versa.
  • Item
    Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
    (Elsevier, 2012-09-24) Singh, Sangeeta; Aznar, Martin; Deenadayalu, Nirmala
    Experimental densities, speeds of sound, and refractive indices of the binary mixtures {1-butyl-3-methylimidazolium methylsulphate ([BMIM]+[MeSO4]−) + methanol, or 1-propanol, or 2-propanol, or 1-butanol} were measured over the whole range of composition at T = (298.15, 303.15, 308.15, and 313.15) K. From the experimental data, excess molar volumes, excess isentropic compressibilities, deviation in refractive indices and molar refractions were calculated. The excess molar volumes, change in isentropic compressibilities, and deviation in refractive indices were fitted by the Redlich–Kister smoothing polynomial. The Lorentz–Lorenz equation was applied to correlate the volumetric properties and predict the density or the refractive index of the binary mixtures. Results for these quantities have been discussed in terms of intermolecular interactions between the components of the mixtures. For all the systems studied, the excess molar volume and excess isentropic compressibility are negative, while the change in refractive index on mixing is always positive over the entire composition range and at all temperatures.