Research Publications (Applied Sciences)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213
Browse
Search Results
Item Synthesis and characterization of 2′,3′-epoxy propyl-N-methyl-2-oxopyrrolidinium salicylate ionic liquid and study of its interaction with water or methanol(Royal Society of Chemistry, 2016) Vasanthakumar, Arumugam; Bahadur, Indra; Redhi, Gan G.; Gengan, Robert MoonsamyImportant physico-chemical properties of ionic liquids (ILs) can be manipulated by adjusting the nature of the cation or anion. These properties are exploited in applications such as organic synthesis, catalysis and electrochemical processes to mention a few. In this work, the novel pyrrolidone ionic liquid N-(2′,3′-epoxypropyl)-N-methyl-2-oxopyrrolidinium salicylate [EPMpyr]+[SAL]− was synthesized using two steps and characterized. The temperature dependent density and speed of sound for ionic liquid, methanol, water, and their corresponding binary mixtures of {IL (1) + methanol or water (2)} were measured over the entire range of mole fractions at temperatures from T = (293.15 to 313.15) K in steps of 5 K, under atmospheric pressure. The calculated thermodynamic properties such as excess molar volume VEm, isentropic compressibility ks, intermolecular free length Lf, and deviation in isentropic compressibility Δks, were derived from the investigated density and speed of sound data. The resulting experimental data for excess molar volumes VEm, intermolecular free length Lf, and deviation in isentropic compressibility Δks, were well fitted to the Redlich–Kister polynomial equation. The effect of temperature and concentration on thermophysical properties was also provided.Item Synthesis, characterization and thermophysical properties of ionic liquid N-methyl-N-(2′,3′-epoxypropyl)-2-oxopyrrolidinium chloride and its binary mixtures with water or ethanol at different temperatures(Elsevier, 2016) Vasanthakumar, Arumugam; Bahadur, Indra; Redhi, Gan G.; Gengan, Robert Moonsamy; Anand, KrishnanA novel ionic liquid, namely, N-methyl-N-(2′,3′-epoxypropyl)-2-oxopyrrolidiniumchloride [Epmpyr]+[Cl]− was synthesized and characterized by different techniques such as NMR (1H and 13C), FTIR, and elemental analysis. The water content of the ionic liquid was checked by Karl Fisher titration. Further, the density, ρ, and speed of sound, u, were measured for the above ionic liquid and the corresponding binary systems with water or ethanol at different temperatures ranging from (293.15 to 313.15) K. The derived thermodynamic properties for instance excess molar volumes, VE m isentropic compressibility, κs, and deviation in isentropic compressibility, Δκs, were investigated from the density and speed of sound data, respectively. It is noted that density and speed of sound of the ionic liquid and its binary mixtures were decreased with increase in temperature, whereas excess molar volume, isentropic compressibility, and deviation in isentropic compressibility values increased. Derived properties such as excess molar volumes, and deviation in isentropic compressibility data were fitted to the Redlich-Kister polynomial equation. The measured and calculated data were interpreted in terms of intermolecular interfaces and structural effects between similar and dissimilar molecules upon mixing.