Research Publications (Applied Sciences)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213
Browse
Search Results
Item Influence of epoxy group in 2-pyrrolidonium ionic liquid interactions and thermo-physical properties with Ethanoic or Propanoic acid at various temperatures(ACS Publications, 2016) Vasanthakumar, Arumugam; Redhi, Gan G.; Gengan, Robert MoonsamyIn this present study, the interaction between a carboxylic acid and ionic liquids, in terms of their binary mixtures and corresponding thermo-physical properties, was investigated. Here, the novel ionic liquid (IL) [EPMpyr]+[Cl]− was synthesized, and it has been mixed with ethanoic or propanoic acids. The influence of the epoxy group in this ionic liquid was more strongly affected with the acids, and their physicochemical properties at varied temperatures are discussed in term of density (ρ), viscosity (η), speed of sound (u), and refractive index (n) measurements. The density (ρ), speed of sound (u), viscosity (η), and refractive index (n) of the IL, ethanoic acid, propanoic acid, and their corresponding binary mixtures {[([EPMpyr]+[Cl]− (1) + ethanoic or propanoic acid (2)} have been measured at T = (293.15–313.15) K and at P = 0.1 MPa. The theoretical thermodynamic properties of excess molar volumes (VmE), isentropic compressibility (ks), deviation in isentropic compressibility (Δks), and intermolecular free length (Lf) are calculated using experimental density and speed of sound data. The VmE and Δks values for both binary mixtures were found to be negative over the entire mole fraction range of composition at all the investigated temperatures. These results suggest the existence of specific interactions between components in the molecules. The experimental data could be helpful to understand the molecular interactions between the IL and carboxylic acid combinations. The experimental data were fitted to the Redlich–Kister polynomial equation.Item Synthesis and characterization of 2′,3′-epoxy propyl-N-methyl-2-oxopyrrolidinium salicylate ionic liquid and study of its interaction with water or methanol(Royal Society of Chemistry, 2016) Vasanthakumar, Arumugam; Bahadur, Indra; Redhi, Gan G.; Gengan, Robert MoonsamyImportant physico-chemical properties of ionic liquids (ILs) can be manipulated by adjusting the nature of the cation or anion. These properties are exploited in applications such as organic synthesis, catalysis and electrochemical processes to mention a few. In this work, the novel pyrrolidone ionic liquid N-(2′,3′-epoxypropyl)-N-methyl-2-oxopyrrolidinium salicylate [EPMpyr]+[SAL]− was synthesized using two steps and characterized. The temperature dependent density and speed of sound for ionic liquid, methanol, water, and their corresponding binary mixtures of {IL (1) + methanol or water (2)} were measured over the entire range of mole fractions at temperatures from T = (293.15 to 313.15) K in steps of 5 K, under atmospheric pressure. The calculated thermodynamic properties such as excess molar volume VEm, isentropic compressibility ks, intermolecular free length Lf, and deviation in isentropic compressibility Δks, were derived from the investigated density and speed of sound data. The resulting experimental data for excess molar volumes VEm, intermolecular free length Lf, and deviation in isentropic compressibility Δks, were well fitted to the Redlich–Kister polynomial equation. The effect of temperature and concentration on thermophysical properties was also provided.Item Efficient catalytic activity of ionic liquid-supported NiFe2O4 magnetic nanoparticle doped Titanium Dioxide nano-composite(IJCEA, 2016-12) Vasanthakumar, Arumugam; Redhi, Gan G.; Gengan, Robert MoonsamyIn this work the author disclose an effective and environment-friendly approach to the preparation of an ionic liquid supported, magnetic nanoparticle doped titanium oxide nanocomposite. The novel ionic liquid N-(2′, 3′-epoxypropyl)-N-methyl-2- pyrrolidonium salicylate was first synthesized and characterized by 1H-NMR, 13C-NMR, elemental Analysis and FTIR. It was subsequently used for the preparation of a composite material by traditional protocols. This ionic liquid is able to connect the NiFe2O4 magnetic nanoparticles with titanium dioxide via strong ionic liquid interactions. The composite was characterized by FT-IR, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray (EDS) analysis, Transmission Electron Microscopy (TEM), High-Resolution Transmission Electron Microscopy (TEM) and Diffraction studies (DF). The catalytic activities of these composites were assessed by the reduction of nitro aniline with the aid of UV spectroscopy. Furthermore, the composite material was easily recovered and re-used with negligible loss of its catalytical activity.Item Synthesis, characterization and thermophysical properties of ionic liquid N-methyl-N-(2′,3′-epoxypropyl)-2-oxopyrrolidinium chloride and its binary mixtures with water or ethanol at different temperatures(Elsevier, 2016) Vasanthakumar, Arumugam; Bahadur, Indra; Redhi, Gan G.; Gengan, Robert Moonsamy; Anand, KrishnanA novel ionic liquid, namely, N-methyl-N-(2′,3′-epoxypropyl)-2-oxopyrrolidiniumchloride [Epmpyr]+[Cl]− was synthesized and characterized by different techniques such as NMR (1H and 13C), FTIR, and elemental analysis. The water content of the ionic liquid was checked by Karl Fisher titration. Further, the density, ρ, and speed of sound, u, were measured for the above ionic liquid and the corresponding binary systems with water or ethanol at different temperatures ranging from (293.15 to 313.15) K. The derived thermodynamic properties for instance excess molar volumes, VE m isentropic compressibility, κs, and deviation in isentropic compressibility, Δκs, were investigated from the density and speed of sound data, respectively. It is noted that density and speed of sound of the ionic liquid and its binary mixtures were decreased with increase in temperature, whereas excess molar volume, isentropic compressibility, and deviation in isentropic compressibility values increased. Derived properties such as excess molar volumes, and deviation in isentropic compressibility data were fitted to the Redlich-Kister polynomial equation. The measured and calculated data were interpreted in terms of intermolecular interfaces and structural effects between similar and dissimilar molecules upon mixing.