Repository logo
 

Research Publications (Applied Sciences)

Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and Caspase-9 splice variants in A549 cells
    (Wiley Online Library, 2016) Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert Moonsamy
    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP) in A549 lung and SNO oesophageal cancer cells. A one‐pot green synthesis technique was used to synthesise MLAuNP. A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase‐3/7, −9 activity, and ATP levels (luminometry). The mRNA expression of c‐myc, p53, Skp2, Fbw7α, and caspase‐9 splice variants was determined using qPCR, while relative protein expression of c‐myc, p53, SRp30a, Bax, Bcl‐2, Smac/DIABLO, Hsp70, and PARP‐1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro‐apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase‐9, caspase‐3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP‐1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl‐2, Hsp70, Skp2, Fbw7α, c‐myc mRNA, and protein levels and activated alternate splicing with caspase‐9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase‐9. J. Cell. Biochem. 117: 2302–2314, 2016.
  • Thumbnail Image
    Item
    Molecular immunogenetics of apoptosis : experimental dilemas
    (International Journal of Biological & Pharmaceutical Research, 2012) Singh, Rishan; Reddy, Lalini
    There have been several research articles published on the biological and biochemical nature of apoptosis. These have included studies on the molecular genetics of apoptosis. Apart from the genes that are involved in the apoptotic cascade, there are several other genes that are either activated or inhibited when cell lines are exposed to apoptotic stimuli. This article addresses the simplicity and complexity of the genetic nature of apoptosis in a variety of cell lines.
  • Thumbnail Image
    Item
    Apoptosis in the human laryngeal carcinoma (HEp-2) cell line by Bulbine natalensis and B. Frutescens fractions
    (IJBPR, 2012) Singh, Rishan; Reddy, Lalini
    Many plants that belong to the genus Bulbine have compounds in their roots and leaves which are considered important for traditional treatments. The stems and roots of Bulbine species are believed to contain anticancer compounds such as anthraquinones, including chrysophanol and knipholone. However, in general, people utilise plants of the Bulbine genus for the treatment of rashes, itches, wounds, burns, cracked lips and cracked skin. This study assessed the effect of aqueous and organic fractions of Bulbine natalensis and Bulbine frutescens on the human laryngeal carcinoma cell line (HEp-2) for apoptosis. The MTT assay was used to determine the cytotoxicity of the fractions administered and to select fractions for analysis of bax and caspase-3 gene expression, which are induced during programmed cell death type 1, known as apoptosis. All of the B. natalensis fractions induced expression of caspase-3, while the tested B. frutescens aqueous root fractions failed to induce expression of caspase-3. The variation in bax gene expression indicated that HEp-2 cell death was due to apoptosis and other unknown forms of cell death that may or may not activate caspase-3 gene expression.
  • Thumbnail Image
    Item
    Silver nanoparticles of Albizia adianthifolia : the induction of apoptosis in human lung carcinoma cell line
    (BioMed Central, 2013) Govender, Rishalan; Phulukdaree, Alisa; Gengan, Robert Moonsamy; Anand, Krishnan; Chuturgoon, Anil A.
    Background Silver nanoparticles (AgNP), the most popular nano-compounds, possess unique properties. Albizia adianthifolia (AA) is a plant of the Fabaceae family that is rich in saponins. The biological properties of a novel AgNP, synthesized from an aqueous leaf extract of AA (AAAgNP), were investigated on A549 lung cells. Cell viability was determined by the MTT assay. Cellular oxidative status (lipid peroxidation and glutathione (GSH) levels), ATP concentration, caspase-3/-7, -8 and −9 activities were determined. Apoptosis, mitochondrial (mt) membrane depolarization (flow cytometry) and DNA fragmentation (comet assay) were assessed. The expression of CD95 receptors, p53, bax, PARP-1 and smac/DIABLO was evaluated by flow cytometry and/or western blotting. Results Silver nanoparticles of AA caused a dose-dependent decrease in cell viability with a significant increase in lipid peroxidation (5-fold vs. control; p = 0.0098) and decreased intracellular GSH (p = 0.1184). A significant 2.5-fold decrease in cellular ATP was observed upon AAAgNP exposure (p = 0.0040) with a highly significant elevation in mt depolarization (3.3-fold vs. control; p < 0.0001). Apoptosis was also significantly higher (1.5-fold) in AAAgNP treated cells (p < 0.0001) with a significant decline in expression of CD95 receptors (p = 0.0416). Silver nanoparticles of AA caused a significant 2.5-fold reduction in caspase-8 activity (p = 0.0024) with contrasting increases in caspase-3/-7 (1.7-fold vs. control; p = 0.0180) and −9 activity (1.4-fold vs. control; p = 0.0117). Western blots showed increased expression of smac/DIABLO (4.1-fold) in treated cells (p = 0.0033). Furthermore, AAAgNP significantly increased the expression of p53, bax and PARP-1 (1.2-fold; p = 0.0498, 1.6-fold; p = 0.0083 and 1.1-fold; p = 0.0359 respectively). Conclusion Data suggests that AAAgNP induces cell death in the A549 lung cells via the mt mediated intrinsic apoptotic program. Further investigation is required to potentiate the use of this novel compound in cancer therapy trials.