Research Publications (Applied Sciences)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/213
Browse
2 results
Search Results
Item Biogenic metallic nanoparticles as enzyme mimicking agents(Frontiers Media SA, 2023-03) Ngcongco, Khanyisile; Krishna, Suresh Babu Naidu; Pillay, KarenThe use of biological systems such as plants, bacteria, and fungi for the synthesis of nanomaterials has emerged to fill the gap in the development of sustainable methods that are non-toxic, pollution-free, environmentally friendly, and economical for synthesizing nanomaterials with potential in biomedicine, biotechnology, environmental science, and engineering. Current research focuses on understanding the characteristics of biogenic nanoparticles as these will form the basis for the biosynthesis of nanoparticles with multiple functions due to the physicochemical properties they possess. This review briefly describes the intrinsic enzymatic mimetic activity of biogenic metallic nanoparticles, the cytotoxic effects of nanoparticles due to their physicochemical properties and the use of capping agents, molecules acting as reducing and stability agents and which aid to alleviate toxicity. The review also summarizes recent green synthetic strategies for metallic nanoparticles.Item Biomedical applications and toxicity of nanosilver : a review(Ituta e-solutions, 2015-12) Krishna, Suresh Babu Naidu; Govender, Patrick; Adam, Jamila KhatoonNanotechnology is a promising arena for generating new applications in medicine. It is advancing rapidly due to the great progress achieved in various fileds including electronics, machanics, cosmetics, food, etc. In order to successfully bifunctionalise nanoparticles for a given biomedical application, a wide range of chemical, physical and biological factors have to be taken into account. Silver nanoparticles (AgNPs) exhibit strong antibacterial activity owing to their large surface to volume ratios and crystallographic surface structure. Nanosilver particles have been widely used in a range of biomedical applications including diagnosis, treatment, medical device coatings, drug delivery and personal health care products. With the growing application of nanosilver particles in medical contexts, it is becoming necessary for a better understanding the mechanisms of action, biological interactions and their potential toxicity on exposure. This review aims to provide critical assess-ment of the current understanding of antibacterial activity, biomedical applications and toxicity of silver nanoparticles.