Faculty of Engineering and Built Environment
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9
Browse
Item 39th Johannesburg International Conference on “Chemical, Biological and Environmental Engineering” (JCBEE-23) Nov. 16-17, 2023 Johannesburg (South Africa)(International Institute of Chemical, Biological & Environmental Engineering (IICBEE), 2023-11-16) Chetty, Manimagalay; Rathilal, Sudesh; Tetteh, Emmanuel; Singh, NikitaAbstract—Recent energy demand and environmental concerns associated with fossil fuels makes algae biomass a desirable energy source. Algal biomass has a high organic content and a variety of metabolic properties that make it a promising resource for managing wastewater and sequestering CO₂, in addition to producing profitable biobased products. However, the operation and valorization of algae biomass on a large scale are accompanied by significant costs and setbacks. Therefore, the transition towards a biobased economy requires this study to examine emerging technologies that could utilize algae biomass as an industrialized feedstock from the wastewater settings. A comprehensive analysis of various green technologies of producing high-value products (lipids and hydrocarbons) from algae biomass was reviewed. The fundamental principles that limit the cultivation , extraction, and conversion of different types of algae biomasses for commercialization are discussed. Furthermore, the challenges, future research directions and potential opportunities of valorizing algae biomass was highlighted. It was noted that, exploring algae biomass towards sustainable waste management with resources recovery is viable for industrialization.Item Analysing South Africa’s automotive energy consumption : application of index decomposition analysis(2021-01) Machivha, Rofhiwa Tevin; Olanrewaju, Oludolapo AkanniThis research focuses on applying the Index Decomposition Analysis (IDA) to South Africa’s automotive industry to decompose energy consumption and further make use of regression analysis to understand how it relates to the economy. South Africa has been going through an energy crisis, which has resulted in ongoing load shedding as a way to manage this crisis. Looking at South Africa’s energy generation, it can be noted that the entire country depends on Eskom as the main supplier and of electricity, but it is unable to keep pace with the demand. The results of the research show that there exists a nexus across all segments between energy consumption and GDP; furthermore, the decomposition results show that energy consumption in some years experienced a reduction. However, it can be seen that an increase in energy consumption year on year is predominant; this then suggests that the reductions experienced were the result of a special event; hence, it can be deduced that overall energy consumption has increased slightly. The increase is as a result of the activity effect which contributed the most towards this whilst the structural effect yielded a negligible contribution. Lastly, the intensity effect contributed to the reduction in energy consumption as a result of sectoral shifts; this reduction contributed towards keeping the overall increase in energy consumption low. This study aimed to outline the differences in energy consumed during the production of different vehicle classes, citing various factors responsible for the changes in energy consumption during vehicle production, raising awareness with manufacturers on the impact industrial energy consumption has on the national energy grid and on advising medium to large manufacturers to become suppliers.Item The application of lean principles to mitigate greenhouse gas emissions in an automotive industry(2020-09) Ramsunder, Keshav; Olanrewaju, Oludolapo AkanniA common factor for industrial production is energy, and the level of energy consumed is typically used to measure the growth and economic development of countries. However, as the industrial sector expands and makes efforts to gain competitive advantage, there is a growing concern regarding energy consumption and the ecological burden related to energy use. Thus far, industry has relied on the Lean manufacturing paradigm to gain the contemporary benefits of profitability, flexibility, and increased efficiency. More recently, the association of Lean manufacturing and environmental impacts has grown in both the industrial and academic fields. The main aim of this research is to investigate the correlation between lean tools and their effect on Green House Gas emissions, ultimately measuring environmental performance. The research is quantitatively based and entails the study of a weld process production line at Toyota South Africa Motors. The environmental impacts of the production process were observed and measured before and after the implementation of three lean tools: Value Stream Mapping (VSM), Total Productive Maintenance (TPM) and Standardized Work. Comparing the outcomes, the study found significant differences in the pre-test and post-test of each lean technique applied. VSM allows one to visualize and magnify the environmental performance of the process, which allows for simple quantifying of environmental metrics. TPM brings to light that equipment that is regularly maintained to operate at optimum condition reduces non-value adding energy usage. However, in contrast, Standardized Work has shown minimal benefits within the context of this research. The findings of this research are beneficial as they contribute to gaining a better understanding of the way lean tools affect environmental performance. While the study contributes to the current body of knowledge, it can also enlighten Small to Medium Enterprises, practitioners and larger organizations to rethink current strategy and allow for simultaneous implementation of Lean Green operations.Item An appraisal of building information modelling technology in building construction and maintenance in Africa : a case of Nigeria and South Africa(2023-05) Toyin, James Olaonipekun; Mewomo, Modupe CeciliaBuilding Information Modelling technology (BIM-T) continues to gain attention. Its adoption creates a platform that allows the built environment professionals to share project information through a common database. At the same time, there is an increased perception that implementing BIM on construction projects will positively influence building production throughout its lifecycle. Recent studies have revealed a low level of BIM implementation in the African construction industry. Currently, the utilisation of BIM for building production has received a significant acceptance rate in developed regions, while in African countries, it is still at an infant stage. Moreover, previous studies have established that BIM application comes with various barriers. These barriers contribute to its low adoption, application and implementation. Nevertheless, there are still some notable benefits and impacts on building production, which have been the main drivers for its continual adoption. Therefore, this study aimed to research BIM-T applications in African countries, focusing on the Nigerian and South African construction industries. The goals are to assess its level of awareness, usage, barriers hindering its application/implementation and benefits accruable with its adoption. BIM impacts the building production lifecycle and determines the strategies to promote its application among construction professionals for sustainable construction in developing countries. To achieve the objective of this research, an extensive review of the literature was conducted on usage, barriers to BIM adoption, application/implementation, benefits of adopting BIM, its impacts on building production, and strategies to promote its application/implementation. A structured questionnaire elicited constructive data from the Nigerian built environment professionals (NIA, NIOB, NIQS, and NSE) and the South African construction-related professionals (SACPCMP). The web-based (Google form) questionnaire was distributed online. According to the distribution among the professionals, 276 and 105 respondents indicated their willingness and availability to participate in the research from Nigeria and South Africa, respectively. The generated data was analysed using the following descriptive measures: mean item score (M.I.S), relative important index (RII), ranking and frequency and quantitative inferential analysis (factor analysis, pairwise comparison, one-way ANOVA and Kruskal-Wallis). It was found that there is a significant increase in the level of BIM awareness among Nigerian and South African construction professionals compared to previous findings. 98.55% and 96.19% of respondents, respectively affirmed that they are aware of BIM. Nevertheless, these findings established that there are still BIM-related barriers peculiar to both countries; the top common three barriers are low computer skills among some of the professionals, habitual resistance to change from the traditional style of design and build, and government's unwillingness to support BIM use. These barriers could be responsible for the professional’s low level of BIM tool usage. The study also revealed that all 13 identified BIM benefits are significantly important in both countries. From this, it could be concluded that BIM application has significantly improved the production of buildings through its contribution to performing tasks from building design to post-construction stages. Finally, the respondents identified the need for foundational knowledge in an educational institution on BIM tool use and its applications as a critical area of focus that could assist the promotion of BIM. This study has extensively documented the various research contributions carried out in this study's area of focus. The preliminary survey result concludes that the findings will assist the professional body in making intelligent decisions and adequate measures to advance the adoption, application/implementation of BIM among their members. It will also inform the institutions about what is required from their construction graduates to improve their employability in the industry.Item An appraisal of procurement challenges facing emerging contractors in public sector projects in South Africa(2024-05) Bangani, Sibabalo Edmond; Mewomo, Modupe CeciliaPoor participation and performance of emerging contractors in public sector construction projects is currently an issue of major concern in South Africa (SA), as economic development relies mainly on the sustainability of small businesses. While the South African government has endeavoured to make provisions for the advancement of the emerging contractors through the regulatory framework and Section 217(i) of the constitution, earlier studies have revealed that the emerging contractors continue to face several procurement challenges. These procurement challenges have adversely impacted the growth and development of small contractors. Unfortunately, the available provisions in the constitution and the regulatory framework have not been able to adequately solve the problem. This has led to a high rate of small business failures in South Africa. These procurement challenges include late payments, poor contract management, poor cash flow management, the complexity of regulations, too much competition, political interference, and a lack of skills in pricing techniques, to mention a few. This study aimed to appraise the procurement challenges facing emerging contractors in public sector projects in South Africa with a view to developing strategies to mitigate the challenges experienced. The study focused on CIDB-registered construction companies in Gauteng province under CIDB levels 4 and 5 registered as general building and civil engineering classified contractors. The study adhered to a quantitative explanatory approach. A survey questionnaire comprising structured questions relating to the study’s objectives was drawn up and distributed to the participants. The data is presented using the tables while the analysis of the data was achieved through using the appropriate descriptive and inferential statistics to measure characteristics of the study population and to make inferences about the population from data set respectively. The study found that late payments, political interference, poorly managed cash flows, too much competition, and a lack of understanding of pricing techniques were the top five critical challenges facing the emerging contractors in the South African construction industry. Further investigation on the impacts of the identified challenges facing the emerging contractors in South Africa revealed that project cost and time overruns, lack of access to public sector contractors, loss of profits, blacklisting by creditors, liquidation, and abandoned projects negatively impact the success of the emerging contractors in South Africa. The study further identified potential measures to overcome the identified procurement challenges. These measures include: reviewing procurement policies for contractor development with emphasis on business and management skills development programmes; access to finance be made easily accessible; contractors be trained to separate business operations from family operations, including proper cash flow management; skills development training specifically for small contractors; joint venture partnerships for emerging contractors to curb financial and administrative burdens and skills transfer; implementing early payment arrangements with the organs of state and ensuring timely payments from clients; breaking down bids into smaller projects; the provision of more and detailed information for bids during the tender stage; the relaxation of unnecessary bureaucratic procedures; the provision of tax holidays; and after care and follow-up training to be provided to ensure that the small contractors remain in business. Based on these findings, impacts, and mitigation measures, the study recommends revising government policies regarding the payment of emerging contractors to address the challenge of late payments, thus prioritising timely payments for all emerging contractors and, where possible, establishing early payment arrangements; the training of emerging contractors and skills development be prioritised; and entry-level training for CIDB Level/Grade 1 contractors be implemented to upskill those emerging contractors.Item Architectural considerations and resource allocation in energy efficient networking(2022-09-29) Molefe, Mlungisi; Nleya, BakheWord-wide data traffic is continuously surging, triggered mainly by the emergence of Internet-of-Things (IoT)’s services and Fog-Cloud computing-based applications. This calls for existing optical and wireless-based network infrastructures to upgrade capacity accordingly to meet required massive bandwidth demands to accommodate the ever-surging data traffic volumes. However, continuously elevating the resource requirements in terms of bandwidth provisioning implies increasing the number of en-ergy-consuming network elements, which will increase overall operational expendi-tures and carbon footprint due to extra power generation. Carbon emissions contribute significantly to global warming. To avert this, it has become necessary to promote en-ergy-efficient networking. For that reason, it necessitated an emphasis on energy effi-ciency in the design, operation, and planning of transport networks. The current dense wavelength division multiplexing (DWDM) based optical transport network architectures operate with fixed-grid employing fixed data rates. So, making this rigid approach to capacity allocation leads to inefficiencies in both spectrum allo-cation and energy usage. Flexible (or elastic) optical transport networks with flexible-grid were proposed to improve bandwidth provisioning efficiencies. Such networks support adaptive line rates and OFDM-based optical transmission, thus, this will lead to lesser network elements deployed and, consequently an improvement in energy ef-ficiency. Similarly, wireless networks, whose data traffic is mostly derived from de-vice-to-device (D2D) communication and heterogeneous 5G cellular networks (HET-NETs) have since made tremendous strides to further enhance bandwidth by way of overlaying multiple types of low power small cells in a high-power macro cell. They afford more opportunities to explore the potential cognition and cooperation diversi-ties to improve spectral efficiency. Thus in this work, we focus on both architectural design and operation of wireless and optical transport networks coupled with resource allocation. A model joint all photonic and wireless transport network architecture framework is proposed and analyzed. The architecture’s performance in servicing high-capacity mobile back-haul and front-haul traffic and real-time services support is evaluated by both analytical and simulation approaches. Various routing and switching scenarios are considered. Overall, results demonstrate that elasticity allocation of resources (bandwidth) can vastly improve the network performance in terms of spectral efficiency, reduced locking probability, and enhanced end-to-end network throughput.Item An assessment of the adoption of smart building concept in the Nigerian construction industry(2022-05-13) Ejidike, Cyril Chinonso; Mewomo, M. C.Technological penetration across developing countries has impacted the construction industry, with more construction stakeholders deploying various technologies into the building lifecycle's design, construction, management, and maintenance. The building sector has evolved by adopting and implementing smart tools for its operations over the past few years. Building information modelling (BIM), the internet of things (IoT), and smart devices (sensors) are game-changers that have helped to reduce the complexity of construction activity and increase productivity. Meanwhile, introducing the sustainable development concept in the construction industry has enabled the proper management of the earth's natural resources and provided a pathway for ecosystem balance alongside socio-economic development. Amid the skyrocketing population growth, urban sprawl, and globalization, the building industry is confronted with the challenge of providing adequate and holistic built infrastructures such as efficient energy management, good water supply, occupants' indoor comfort, and the management of construction waste. The smart building concept (SBCs), which employs sustainable construction whereby the built product is constructed according to best practices, including efficient energy use, the recycling of raw material, and the realization of a sustainable and carbon-free environment, has demonstrated the digitalization of sustainable development in the construction industry. Therefore, this dissertation seeks to asseeement of the adoption of smart building concepts in the Nigerian construction industry. The research poses the following questions: 1) What is the awareness level of construction professionals in the adoption of the smart building concept (SBCs) in the Nigerian construction industry? 2) What factors can enhance the awareness of the smart building concept among construction professionals in the Nigerian construction industry? 3) What factors enhance the adoption of SBCs among professionals in the Nigerian construction industry? 4) What are barriers to adopting SBCs in construction projects in the Nigerian construction industry? A random sampling technique in selecting the construction professionals. The total population of construction professionals within the study area is 5,108, comprising construction professionals of Architects, Builders (Mechanical, Electrical, and Structural), Engineers, and Quantity Surveyors practicing in Lagos state. The sample size selection was made using the Yamane formula (1967) for calculating sample size. Therefore, the sample for this study is 363. A well-structured questionnaire of 363 was administered to construction professionals to gather relevant data on the topic. The data collected were analyzed using the Kruskal Wallis H test and weighted mean, factor analysis, and binary regression analysis, and mean item score and agreement analysis technique. The key finding of the research indicated that construction professionals are generally aware of the smart building concept. Administration, education, organizational, and environmental factors were discovered to enhance the adoption of smart building concepts among construction professionals. Furthermore, the research indicates that energy and cost-saving, job creation, safety and security, and health care are the critical factors enhancing in adoption of smart building concepts among construction professionals in the Nigerian construction industry. Lastly, the research result discovered that the high cost of smart building materials, inadequate power supply, resistance to change from the use of traditional technology, poor maintenance culture, poor knowledge of smart building technology, inadequate well-trained labour in the practice of smart building construction, and inadequate finance schemes are the significant barriers to the adoption of smart building concept. Based on this research finding, the research recommends that construction professionals engage more in smart building concepts, propagating the country's awareness and development of smart building construction. Furthermore, the government should establish a common platform for the collaboration of all stakeholders, such as professionals in the construction industry and academia, by way of policymaking and funding of research and development towards implementing these smart technologies. It will go a long way for employment creation and improve the country's economy. This study contributes to the body of knowledge by discovering the critical factors that will aid the successful adoption of the smart building concept in the Nigerian construction industry.Item An assessment of the impact of selected construction materials on the life cycle energy performance and thermal comfort in buildings(2021) Haripersad, Rajesh; Lazarus, Ian Joseph; Singh, Ramkishore; Aiyetan, Olatunji AyodejiSouth Africa is a developing country with various construction projects that are being undertaken both by government and the private sector. The requirements for the construction of energy-efficient buildings as well as the selection methods for providing construction materials have hence become important. Energy efficiency improvements needs to be implemented in the construction of these buildings in order to decrease energy usage and costs and provide more comfortable conditions for its occupants. Previous studies revealed that most of the focus for improving energy efficiency in buildings has been on their operational emissions. It is estimated that about 30% of all energy consumed throughout the lifetime of a building is utilized as embodied energy (this percentage varies based on factors such as age of building, climate and materials). In the past this percentage was much lower, but with increased emphasis placed on reducing operational emissions (such as energy efficiency improvements in heating and cooling systems), the embodied energy contribution has become more significant. Hence, it is important to employ a life-cycle carbon framework in analysing the carbon emissions in buildings. The study aims to augment energy efficiency initiatives by showcasing energy reduction strategies for buildings. The study assessed the thermal performance of selected construction materials by analysing different buildings using energy modelling program, EnergyPlus and TRNSYS. The parametric study was set in the central plateau region of South Africa and was performed to determine appropriate energy efficiency improvements that can be implemented for maximum savings. A life cycle cost analysis was performed on the selected improvements. The models created are representative of the actual buildings when simulated data is compared to recorded data from these buildings. Results showed a significant variation in energy and construction costs with varying construction materials over the buildings’ life cycle. Findings suggest that there is a significant reduction in energy usage when simple efficiency measures are implemented. The study recommends the use of different energy efficient building materials and the implementation of passive interventions in the constructing of buildings; the thermal performance of a building be optimized to ensure thermal comfort and the developed model be adopted for use in the engineering and construction industry for the reduction of energy consumption.Item Bioremediation of acid mine drainage and crude contaminated soils(2020-09) Anekwe, Ifeanyi Michael; Isa, Yusuf MakarfiPollution is one of the greatest ills plaguing the existence of the ecosystem which could lead to the annihilation of terrestrial and aquatic habitat if not remedied. Acid mine drainage (AMD) and crude oil are among the major land and water pollutants cause by industrial and human activities. The constant exploration, mining, and processing of mineral resources and prevalent use of petroleum products for economic purposes have contributed to contamination of soil and proximate water bodies which results in environmental degradation; thus, remediation becomes necessary. The treatment of AMD contaminated soils using the conventional methods has some room for improvement to meet the remediation purpose. Bioremediation technology provides a sustainable and eco-friendly approach to the treatment of contaminants. This study aims to evaluate the performance of different potential bioremediation techniques and conduct a comparative analysis of these methods for the treatment of AMD and crude oil-contaminated soils. The treatment approach for both pollutants comprises of soils separately contaminated with AMD and crude oil before the application of bioremediation techniques. For the biostimulation study, contaminated soils were amended with varying ratios of the brewery or municipal wastewaters (BWW and MWW), while the bioventing (BVT) treatment involved wastewater amendment and supply of atmospheric air from the vadose zone at 3L/min at 30 minutes intervals every 48 hours. The bacteria strain Pseudomonas aeruginosa ATCC 15442 used for the study which was inoculated at 5%(w/w) was cultured in two different media for respective treatments and wastewater was amended as an extra energy source for bioaugmentation (BAU) study while Bioattenuation (BAT) which received no amendment was used as a control treatment for the study. The treatments were conducted in plastic bioreactors under mesophilic conditions for 28 days and samples were collected from each treatment system on weekly basis to analyse for sulfate, heavy metals, and total petroleum hydrocarbon (TPH) reduction. The result of the study showed that the amendment of contaminated soils with wastewater increased alkalinity in the system which enhanced microbial activities for effective remediation which recorded 52.43 and 51.23% average TPH and metal removal efficiency for the BSTc treatment. Also, the combined application of bioremediation techniques was more effective than single application as the introduction of oxygen into the treatment system with wastewater amendment increased the TPH and metal removal efficiency by an average of 12.98 and 13.17% respectively but efforts to enhance sulfate removal by air-injection (BVTa) proved abortive with 17.20 and 14.67% removal efficiencies less than BSTa and BAUa respectively as sulfate-reducing bacteria thrive in an anaerobic environment. However, P. aeruginosa ATCC 15442 adopts the sorption process in the reduction of hydrocarbon and metal toxicity with 42.02 and 41.81% average removal efficiencies respectively and the amendment extra nutrient (wastewater) increased the removal efficiency of these pollutants by 25.24 and 16.23% respectively. The results of the study inferred that wastewater (BWW and MWW), air-injection and P. aeruginosa ATCC 15442 showed great potentials in the degradation and removal of TPH, metals and sulfate contaminants, hence, can serve as a viable strategy for the remediation of AMD and crude oil polluted soils while improving waste management and amelioration of pollution aftermath faced by communities involved in mining and oil production and/or processing. There is a need for optimization to ensure effective remediation while further study is required to validate large scale application.Item Biosorption of Fe2+ from potable water using natural and modified sugarcane bagasse(2023-05) Ndebele, Nompumelelo Lindi GelsiahEven though some metals are crucial for the health and development of human bodies, their presence in higher concentrations is worrisome because it has a detrimental effect on people's health. These heavy metals cause cancer and cannot be broken down by biological processes. The removal of heavy metals from water using traditional techniques; such as reverse osmosis, precipitation, ion exchange; has been the subject of extensive investigation. However, because these processes are so expensive to run, a lot of research is currently focusing on using agricultural biomasses to remove these heavy metals. Dumping of this agricultural waste (sugarcane bagasse) in landfills creates dangers of spontaneous combustion, because of microbial activities. The functionality of circular economy depends on waste resources being utilized to their fullest potential, with almost no production of recoverable waste. In a circular economy, sugarcane bagasse is utilized as a fuel source for the boilers that generate process steam and electricity in the sugar mill facilities. Sugarcane bagasse is used in the manufacturing of paper and paper goods, as well as in the agricultural sector. Stakeholders across the value chain, from product design to waste management, This study fulfils the functionality of the circular economy where it looks at extracting the valuable components of the sugarcane bagasse, then further using the sugarcane bagasse to remove heavy metals from potable water. In this study, the adsorption capacities of unmodified and modified sugarcane bagasse for removing Fe2+ from potable water were investigated in batch experiment studies. Sugarcane bagasse comprises cellulose, hemicellulose and lignin. In order to determine the effect of removing/ extracting each component from the sugarcane bagasse, sugarcane bagasse was pretreated with different concentrations of sodium hydroxide and sulphuric acid, ranging between 0.5 wt% and 2.5 wt%, predominantly used to extract lignin and hemicellulose. A cellulosic structure was left behind after the simultaneous removal of both amorphous components (the lignin and the hemicellulose) using the combined pretreatments of sodium hydroxide and sulfuric acid. The advantages of extracting or eliminating these components came from their high value in many sectors. Lignin is used in the paper business and costs between R11 300 and R17 420 per ton, hemicellulose is used in the pharmaceutical sector and costs between R500 and R1000 per ton, and cellulose is utilized in the textile sector. The concentrations of all chemical pretreatments used on the sugarcane bagasse ranged from 0.5 to 2.5%, with alkaline pretreatments intended to extract lignin, acid pretreatments intended to extract hemicellulose, and combination pretreatments intended to remove both lignin and hemicellulose. While cellulose content increased from 32.02 to 65.65% after sodium hydroxide pretreatment, lignin and hemicellulose content reduced from 22.30 and 24.30% to 7.56% and 13.63%, respectively. Lignin and hemicellulose concentration for the sulphuric acid pretreatment went from 22.30 and 24.30% to 14.90% and 13.63%, respectively, while cellulose content went from 35.02 to 65.65%. After the sugarcane bagasse underwent chemical pretreatments, batch studies were conducted on both the natural and chemically pretreated sugarcane bagasse in order to determine how the removal of lignin, hemicellulose, and cellulose affected the performance of the biosorbents in the biosorption of Fe2+ from drinkable water. To assess the efficacy of natural and modified sugarcane bagasse on the Fe2+ removal, the operational parameters investigated in the batch experiments were initial concentration ranging from 1 to 30 mg/L; pH ranging from 2 to 7, contact time ranging from 5 -100 minutes, and adsorbent dose ranging from 0.2 to 1.4 g. For every variation investigation, one variable was varied at a time while keeping the other variables constant. The experimental runs done were repeated thrice and average values are reported throughout the study. According to the biosorption results, 1% NaOH was the best performing biosorbent for the alkali-pretreatment. The most effective biosorbent for the acidpretreatment variation was 2.5% H2SO4. The optimal combination for the pretreatment was (0.5% NaOH + 0.5% H2SO4). Regarding initial concentration variations, all biosorbents were most effective at a concentration of 1 mg/L, where natural sugarcane bagasse was able to remove 50% of Fe2+, 1% NaOH was able to remove 99.7% Fe2+, 2.5% H2SO4 removed 75.93% Fe2+, and the combined-pretreated biosorbent of (0.5% NaOH + 0.5% H2SO4) removed 87.17% Fe2+ . The increase in biosorbent dose led to an increase efficiency of the natural and chemically pretreated biosorbents. The highest removal of Fe2+ was obtained at 1 g (both for the natural and for all the pretreated biosorbents), with 32.2% for the natural; 79.04% for the 1% NaOH; 58.79% for the 2.5% H2SO4 and 70.73% for (0.5% NaOH + 0.5% H2SO4). Results of the study also showed that the highest removal of Fe2+ for the pH variation of 2-7 was at pH “6” for both the natural and pretreated biosorbents. For the variation of the agitation speed, the highest Fe2+ removal was at 160 rpm with 52% Fe2+ removal for the natural sugarcane bagasse. The Langmuir and Freundlich adsorption isotherms were used to study the biosorption mechanisms. Good correlation coefficients (R 2 ) of > 0.95 were obtained for both the Langmuir and Freundlich isotherms for both the natural and modified sugarcane bagasse, indicating that the biosorption followed both homogeneous and heterogeneity interaction between Fe2+ ions and active functional groups of the surface and pores of the biosorbents. Biosorption results for the natural sugarcane bagasse best fitted with the Langmuir isotherm with qmax of 0.770 mg/g, R 2 of 0.987 and RL of 0.938. The alkali and acid-pretreated biosorbents favoured both the Langmuir and Freundlich isotherms with R 2 > 0.95; RL < 1 and 1 𝑛 < 1. The highest qmax of 9.199 and 5.743 mg/g was obtained at 1% NaOH and 2.5% H2SO4, respectively. The combined pretreatment fitted best with only the Langmuir isotherm with R 2 of 0.987, the R 2 of the Freundlich isotherm was less than 0.9. The biosorption of Fe2+ followed both the pseudo-first-order and pseudo-second-order kinetic reactions with 𝑞𝑒(𝑒𝑥𝑝) in close proximity to 𝑞𝑒(𝑐𝑎𝑙𝑐) and R 2 > 0.9. These results showed that sugarcane bagasse had great adsorption capacity after removing the valued components, namely, lignin and hemicellulose. Characterization studies, which included FTIR, XRD, BET and SEM, were also carried out on the natural and pretreated bagasse before and after adsorption experiments. FTIR confirmed the existence of carbonyl, hydroxyl and carboxyl functional groups as major groups responsible for the adsorption of Fe2+ onto the natural and pretreated sugarcane bagasse. XRD revealed that the natural structure of the sugarcane bagasse was of native cellulose consisting of both amorphous and crystalline regions; this structure became more crystalline after the chemical pretreatments as the crystallinity index increased from 39.04% to 66.85% at 1% NaOH; 57.47% at 2.5% H2SO4; and 57.92% at (0.5% NaOH + 0.5%H2SO4). The natural sugarcane bagasse structure featured rough surfaces, according to SEM data, and the main constituents were silicon (Si), carbon (C), and oxygen (O). According to the BET data, employing 1% NaOH, 2.5% H2SO4, and (0.5% NaOH + 0.5% H2SO4), respectively, the initial surface area of 0.904 cm3 /g rose to 1.503, 1.233, and 1.376 cm3 /g and the pore size of 56.33 ̊A increased to 99.63, 93.680, and 99.10 ̊A. According to the EDS data, sodium hydroxide pretreatment performed better in terms of adsorption, followed by combined pretreatment and sulphuric acid. The natural sugarcane bagasse, 1% NaOH, 2.5% H2SO4, and (0.5% NaOH + 0.5% H2SO4) were able to biosorb 0.77, 7.89, 1.63, and 3.8% Fe2+, respectively.Item Capacity challenges facing civil engineering contractors in Kwazulu-Natal, South Africa(IJEIT, 2013-05) Ntuli, Bonga; Allopi, DhirenInsolvency maybe broadly defined as an inability of business entity to meet pending financial commitments. For a construction firm, such a situation creates conditions whereby a business entity is unable to fulfill its contractual obligations with regard to work in progress or credit owing. There are indications to suggest that during times of adverse conditions, the occurrences of insolvencies are mutually exclusive and remain a subject of debate. The occurrences of these financial facilities seem to have adversely affected business operations within the civil engineering construction Industry. in South Africa, figures released by the South African Federation of Civil Engineering Contractors (SAFCEC) in 1992 were suggesting an expected general decline in work load handling by this sector. This was a result of scaling down of heavy Infrastructure projects because of government shifting focus to housing and other related projects mainly towards meeting the needs of the previously disadvantaged communities. During that period large contractors suffered financially and some went through insolvency. The South African government had also put emphasis to transform the sector to allow participation of emerging and small contractors but this was not properly regulated as most of these contractors did not have the experience and skills to operate sustainable construction firms. The Construction Industry Development Board (CIDB) was established in 2000 as a statutory body to provide leadership to stakeholders and to stimulate sustainable growth, reform and improvement of the construction sector for effective delivery and the industry’s enhanced role in the country’s economy. Construction Industry Development Board (CIDB’s) regulations were implemented after 2003 and are continuously improving the sector’s growth. This research seeks to evaluate the findings of an investigation regarding challenges facing Civil Engineering Contractors in KwaZulu- Natal, South Africa. The research reports on the basis of the hypothesis that “the prominent factors associated with civil engineering contractor’s insolvencies are related to operational and strategic issues”. The analysis of the findings from the questionnaires and liquidators reports supports the hypothesis that operational management and strategic factors attribute to high failure rate amongst civil engineering contractors. From the findings, a number of recommendations are made to develop strategies to promote growth and sustainability in the civil construction industry especially amongst emerging contractors. This paper focuses on the questionnaire feedback from construction firm owners and will discuss the findings of the survey.Item Characterisation of concrete with expanded polystyrene, eggshell powder and non-potable water : a case study(2023-05) Mncwango, Bonke; Allopi, DhirenUrbanisation has brought many benefits but it has also highlighted the global lack of housing alongside global natural resource scarcity. Lack of housing on the surface appears to be a singular problem, however in reality it represents a number of society’s biggest challenges such as crime, pollution (as a result of inadequate waste disposal strategies), unhygienic living conditions, as well as numerous health problems. Governments across the world have made various attempts at addressing the issue of lack of housing, including embarking on large scale social and public housing initiatives, building smaller homes for the homeless, as well as removing certain regulatory barriers to allow more houses to be built at a reduced timeframe. These advances have assisted many individuals and families globally, however, there are still many individuals and families that government housing-aid or housing initiatives have not yet reached. These individuals and families are faced with solving their housing crisis on their own, with their own resources. Globally, concrete remains a supreme building material in the construction industry and therefore is a primary factor of consideration for solving the housing crisis, especially for those who have no financial assistance or aid from government. Concrete’s composition is simple: cement, fine aggregate, coarse aggregate and water. The intricate interaction between all four components is meant to stand the test of time. Unfortunately, it is not only the earth’s diminishing natural resource reserves which are causing a decline in the popularity of conventionally produced concrete, but it is also the irreparable harm that it is causing to the environment. The process of concrete production requires large volumes of cement, and cement remains one of the biggest producers of carbon dioxide. Carbon dioxide is a greenhouse gas which in excessive amounts creates a cover that traps the sun’s heat energy in the atmosphere. Another major criticism of conventional concrete is the requirement that it be produced with clean water which is of a drinkable standard. This criticism is justified when considering the extreme water shortages that are experienced by many low to middle income countries around the world. The amount of financial and human resources that local authorities invest in cleansing water to bring it to a drinkable standard is often overlooked. It is obvious that it is less expensive to use water directly from a river in its natural state than using it after it has undergone numerous cleansing processes by local authorities. There have been a notable number of advances in making concrete more resource-efficient and environmentally friendly. These include the advent of lightweight concretes such as expanded polystyrene concrete. Expanded polystyrene concrete not only saves the amount of aggregate that would normally be required in conventional concrete, it also has excellent acoustic and thermal properties, thereby reducing energy consumption which in turn saves money. However, even with such excellent properties, expanded polystyrene concrete still fails to address two of concrete’s major criticisms which are related to the amount of cement used as well as the amount of clean potable water required for mixing. Therefore, by building on the qualities of expanded polystyrene concrete, this research investigates the potential of lowering the amount of cement required in a concrete mix through the use of eggshell powder. Eggshells are a waste product found everywhere in the world and are readily available in almost limitless quantities. The use of eggshells in concrete to lower the amount of cement required will not only achieve a reduction in the amount of carbon dioxide that is produced in the process of producing concrete, it will also assist in contributing toward solving the escalating waste disposal crisis that currently exists for many waste types such as eggshells. It is common for communities to reside close to a river or a natural flowing watercourse, so this research included river water as a variable. Four different concrete mix scenarios were tested to ascertain through experimentation whether the strength properties of concrete that contains expanded polystyrene, eggshell powder and natural river water in various proportions could in any way compare to a conventionally produced concrete mix. In order to comprehensively study material behaviour in this case, sieve analysis, bulk density, fineness modulus, moisture content as well as specific gravity tests were performed on all aggregates used. Furthermore, in order to achieve the required analytical depth for the materials being studied, x-ray diffraction and energy dispersive spectroscopy tests were conducted. As a means of conducting further trend analysis on the different experimental mixes, logarithmic regression models were developed. Through analysis of the output attained from the aforementioned strategies, this research study found that when cement was substituted by eggshell powder at a percentage of 5 % and simultaneously when coarse aggregate was also substituted by expanded polystyrene at a percentage of 5 %, all mixed with non-potable water, the compressive and flexural strength outcomes marginally differed from the strength outcomes of conventionally produced concrete. Furthermore, the substitution of stone by EPS at a percentage of 10 % when mixed with river water was comparable to the substitution of stone by EPS at a percentage of 10 % when mixed with potable water. The results showed that there was a difference of not more than 1.4 MPa and 0.3 MPa in compressive and flexural strength respectively amongst the averages obtained at each age tested. Study results show that the substitution of potable water by non-potable water reduced both the compressive and flexural strength of the concrete when the mix did not contain eggshell powder. However, when eggshell powder was included in the mix, the strength outcomes of the compressive and flexural strength of the concrete mix was comparable to that of conventionally produced concrete. There may be many reasons why it is important to not deviate from convention in the production of numerous products such as concrete; nevertheless, the value of experimentation as demonstrated in this research is that experimentation can give rise to a variety of innovations accompanied by a wealth of solutions to the environmental and socio-economic issues that the world is currently faced with.Item Collaborative approaches in achieving sustainable private-public transportation services in inner-city areas : a case of the Durban minibus taxis(2022-05-13) Mabandla, Lonna S.; Musvoto, Godfrey Gombana; Moodley, Sogendren M.Transportation is a catalytic feature within cities and is interdependent on land use activity by means of a feedback loop that is created between the two. The most catalytic example of this is public transportation routes internal to inner-cities: they draw focus to these areas by enhancing accessibility, therefore creating spaces that are conducive for business activity, while business activity also informs public transportation routes. It is for this reason that this dissertation focuses on public transportation within inner-city areas. Durban is the chosen case study where the dominating form of public transportation within the central business district (CBD) is minibus taxis. The paradox here is that minibus taxis still form part of the informal economy even though they are the leading form of public transportation in South Africa. There have been many attempts to formalise this industry in order for it to follow more regulatory practices, but minibus taxis are privately owned and operate within the capitalist economy. The interventions put in place were aimed to better integrate minibus taxis into the urban fabric of cities for the purpose of creating a more harmonious urban environment, but to date all attempts have failed to produce the intended outcome. This research explores ways in which public and private institutions can collaborate for the intention of creating a better public service. This is critical given that an informal economic entity is dominating the public spaces of South Africa. This research is inspired by the notion of the just city which has major sway in contemporary urban thinking. A just city embraces principles such as good access and heterogeneity in public spaces, amongst others, which are hugely influenced by transportation. The argument of this study is that the application of collaborative planning through a sustainable partnership between the public and private sector will improve the social and environmental sustainability of public transportation. This process is complicated however and one of the major challenges that exist within such collaborative endeavours are power dynamics. As a result, a key focus in the study is around power relations. Practically, power relations should be observed over a period of time, specifically when the different stakeholders engage with each other, so as to reflect valid data. However, a length data collection process was not possible to observe during the data collection phase of this research. Instead interviews were conducted focusing on existing procedural planning practices between the inner-city minibus taxi association (South and North Beach Taxi Association), the eThekwini Transport Authority(ETA), and the eThekwini Town Planning Department. Conclusions and recommendations were then generated based on these dataItem Comparative analysis of specific energy consumption and energy consumption benchmarking in galvanising plants(IEOM Society International, 2022-08-04) Dewa, MendonThe inadequacy of sustainable energy is endlessly posing major challenges globally. The issue of energy optimisation is indispensable for manufacturing sector, particularly for a hot-dip galvanising process where galvanising furnaces are the significant energy users. This study is aimed at comparative analysis of specific energy consumption and energy consumption benchmarking in four galvanising plants with the view to necessitate the identification of best practices. Energy baselines were used as quantitative reference points to compare energy performance indicators and quantify fluctuations in energy performance during the baseline and reporting periods. A quantitative analysis was also conducted to benchmark four galvanising facilities on factors that included the electricity/zinc ratio, electricity /dips ratio and product tonnage/zinc used ratio. The results revealed improved performance for plant 4 over time relative to the baseline consumption when compared to plants 1, 2 and 3. Plant 4 also outperformed other facilities after the energy efficiency interventions in terms of electricity/zinc ratio and electricity/ product tonnage ratio. Given the disparity between the results of specific energy consumption (SEC) for the four plants, it was concluded that SEC alone should not be used as an energy performance indicator.Item Comparative analysis of the implementation of Toyota Production System between a tier-one and tier-two supplier(2024-05) Govender, Prenisha; Dewa, MendonThe Toyota Production systems (TPS) is a methodology that is widely used in the manufacturing automotive industry. The Toyota pyramid model consists of four levels which can be dissected into the first level of philosophy, the second level named process, the third pillar of people and partners, and lastly the problem-solving level. These are also characterised by 14 principles of the model. However, many suppliers face challenges in implementing these principles from the Toyota pyramid model due to lack of knowledge, understanding or available framework for easy implementation and guidance. This study aims to conduct a comparative analysis of the level of implementation of the 14 principles of the Toyota pyramid model by a tier-one and tiertwo supplier. This study also identified areas of strengths and weakness and made provisions for continuous improvement initiatives at each supplier for future work. A quantitative research methodology with a questionnaire as the research instrument, was adopted for this study. A 5-point Likert type scale was used to elicit responses from 25 research participants from the tier-one and tier-two suppliers. Data analysis was conducted through descriptive values of the means, skewness and kurtosis, and an independent sample t-test was used as an inferential tool to establish the relationship between the tier-one and tier-two supplier. Value stream mapping was also deployed to identify the current production processes and kaizen bursts that characterized the two organisations. The results from the comparative analysis of the level of implementation of the Toyota pyramid model revealed that tier-one supplier was demonstrating better performance than tier-two supplier in the implementation of the 14 principles. In addition, the results demonstrated that principle 1, from the philosophy level had a higher mean or was stronger for each supplier. On the hand, principle 8 and principle 12 were found to be weaker in each supplier respectively. The areas of improvement which were highlighted in the kaizen bursts on the value stream map were addressed and kaizen implementation was undertaken. These improvement initiatives included rebalancing a seat-cover assembly line and deployment of an andon management system at the tier-one supplier to improve line efficiency and line management. A framework was also proposed for the tier-two supplier to bridge the gap in its practice for implementation of the Toyota pyramid model principles. Additional principles were added to this framework to ensure an easier and understandable methodology and framework to be referred to for suppliers and companies to improve.Item Comparison for raw and commercial castor oil in the production of biodiesel(2024-05) Masango, Sandile Brendon; Ngema, Peterson Thokozani; Olangunju, Olusegun Ayodeji; Ramsuroop, SureshThe development of industries is associated with higher pollution levels and higher fuel costs. The research on clean energy helps to lessen the reliance on fossil fuels, the ozone layer’s depletion, and the release of hazardous pollutants. The development of renewable energy sources increases energy independence and lessens the harm that fossil fuels do to the environment in the Republic of South Africa (RSA), one of the African Nations. The main the challenge is the fragility of crude oil prices, high unemployment, worries about climate change, and the requirement for the continent's developing economies to use their resources sustainably are what motivate the establishment of a successful biodiesel (Fatty Acid Methyl Ester) business. Particularly in recent years, biodiesel has evolved into one of the most popular biofuels for fuel substitution with biodiesel. In this study, homogeneous alkaline transesterification was used to produce methyl ester biodiesel (FAME) from refined or commercial castor oil (CCO) and raw castor oil (RCO) feedstock. The obtained results were compared to those evaluated, which produce better yield by varying essential parameters, which include reaction temperature, catalyst concentration, and alcohol: oil molar ratio at a constant period of 90 minutes. The effect of potassium hydroxide (KOH) as a catalyst between raw and refined castor oil was compared. The result revealed the performance of the KOH catalyst on raw castor oil yields 98.49% FAME, which was higher than the refined castor, oil which yield was 97.9% FAME. The optimal conditions was reaction temperature 45 oC, methanol:oil mole ratio 1:9, and catalyst concentration 0.625 % w/w, were obtained from refined castor oil were applied to raw castor oil because of the same properties. It was found that the yield of raw castor oil was 98.49% which is higher to that of refined castor oil which is 97.9%. General Rate Equation, Pseudo first order model, Second order model, and Modified-Second order model are the kinetics models that were evaluated and discussed. The kinetic models behavior is that the rate of reaction r increase with the increase in temperature, at the maximum reaction temperature of the study 343.15 K, 5.1×10-07 (K.mL/mol.min) General Rate Equation, 5.7×10-08 (K.mL/mol.min) Pseudo first order, 6.9×10-07 (K.mL/mol.min) Second order model, and 61.4×10-04(K.mL/mol.min) Modified-Second order model. Pseudo first order model and Second order model were the best fitted kinetic models then PFO shows to be best kinetic model for the study by measuring absolute error 1.4×10-04 and relative error 0.999 was very low. The methodology adopted for the study include fuel quality of castor oil (raw and commercial) and produced biodiesel were tested for physicochemical properties. Physicochemical properties and ASTM standard.for raw castor oil :- kinematic viscosity 1.98 (cSt) @50 oC, ASTM D445 , Ash 0.03 (g), ASTM D874, Flash point 114 oC, ASTM D93, sulphur 0.64 ppm, ASTM D5453, density 920 kg/m3 , ASTM D1298/0452, water content 0.05 %, ASTM D2709, and calorific value 44121kJ/kg, ASTM D6751, while for commercial castor oil:- kinematic viscosity 2.98 (cSt) @50 oC, ASTM D445, Ash 0.05 (g), ASTM D874, Flash point 116 oC ASTM D93, sulphur 0.65 ppm, ASTM D5453, density 960 kg/m3 , ASTM D1298/0452, water content 0.04 %, ASTM D2709, and calorific value 44121kJ/kg ASTM D6751. The study is also assessed for economic feasibility to determine if it will be profitable. The process design comprises the main processing unit, reactor, separator, mixing tank, centrifugal pumps and heat exchangers. In this study only, reactor was simulated using ASPEN Plus version 11 software utilizing the generated data from the laboratory. Economic feasibility was based mostly on the reactor and scaling up to plant scale. The cost of biodiesel production per year is R 205391.34/ year, sales cost is R 2464696.08/ year which gives a profit of R 1117077.48/ year which proves economic feasibility of the study. It was concluded that raw castor oil can be suitable used in the process of producing biodiesel since it exhibit higher yield. It was recommended that one must use the generated data to up-scale the process and design other unit in details. Asides vegetable oils, castor seeds are among the identified raw materials from which raw castor oil can be extracted for biodiesel production because it has high oil content up to 60%Item Conceptual framework of environmental sustainable interventions with the use of green infrastructure design criteria on projects(2014) Saroop, Shian Hemraj; Allopi, DhirenThis paper presents a conceptual framework that incorporates eco-efficiency on Infrastructure projects with the use of the environmentally sustainable criteria on infrastructure projects. Mainstreaming environmental aspects and incorporating the eco-efficiency concept into various stages of infrastructure development have not been considered as much as they should have been. Engineers need to look at greener technologies rather than just using traditional engineering solutions. This paper aims to develop a framework that enables a project to be designed in accordance with environmentally sustainable criteria. The key aim of the framework was to create a more socially, economically, and environmentally sustainable neighbourhood, which focused on combating flooding, waste management, water recycling and enhancing biodiversity.Item Data re-sequencing in Smart Grids(IEEE, 2016-11) Khumalo, Zephaniah Philani; Nleya, BahkeCurrently, legacy electrical power grids are being modernized into Smart Grids. These will in turn play a crucial role in real-time balancing between energy productions versus energy consumption. Each Smart Grids will dedicate an advanced metering infrastructure that facilitates collection, storing as well as analyzing data from smart meters to the authorized parties, and also carrying commands, requests, messages and software updates from the authorized parties to the smart meters. As such, data aggregation as well as unimpeded data relaying is a prerequisite for guaranteeing a large acceptance and deployment of Smart Grids. In this paper we provide an overview framework for analyzing packet re-sequencing within the Smart Grid. We utilize the random shortest path calculation algorithm to select the desired routes from source to a given destination. It is from among these that ultimately multipath (dual path) routing of the Advanced Metering Infrastructure data is carried out, hence resulting in re-sequencing necessities.Item Designing a stormwaterharvest system in new smart cities in KwaZulu-Natal, South Africa(2024-05) Mukome, BwijaThe nexus between climate change and water management represents one of the contemporary challenges confronting economic development and sustainable livelihoods in many cities the world over. Thus, assessing the impacts of climate change for evolving smart-city water management, especially for a country like South Africa that is classified as a “water-stressed” country, constitutes an innovative way to water management. This study aimed at proposing an alternative water supply augmentation source that is sustainable for new smart cities under different climatic scenarios within the KwaZulu-Natal Province of South Africa. The specific objectives of the study were to assess the impacts of climate change and the imperativeness of a sustainable and efficient stormwaterharvesting (SWH) system in the new smart city; determine the social, economic and technical barriers to an efficient SWH system; evaluate the technical and financial feasibility of stormwaterharvesting system integration in smart cities; and design a prototype sustainable and efficient pilot-scale engineering SWH system. To address these objectives, the aggregated views of stakeholders within the Water/ Climate change sector were solicited through questionnaires and interviews collected data were analysed using a statistical package and thematic classification. The triangulation method was used to justify acceptable opinions where both the qualitative and quantitative responses were in opposing positions. The standardised rainfall anomaly index (SRAI), simple precipitation ratio (SR), coefficient of variation in rainfall distribution (CV), precipitation concentration index (PCI), and the seasonal precipitation index (SPI) were used to evaluate the impacts of climate change on rainfall variability; whilst different inferential statistics techniques like Mann Kendal, Sen slope, regression, correlations, multifactor analysis (MFA), and chi-square test values- interpreted using the p-values- were used to identify the abrupt changes, trend patterns and significant impacts of climate change on the hydrological water balance for the study area, which in turn influenced decision-making in designing a new smart city. Based on a monthly water balance evaluation, the technical and financial feasibility of stormwater harvest system integration in smart cities was thematically deduced from survey interviews conducted and validated with simple component costing for SWH design and operation. The design of a sustainable and efficient pilot-scale engineering SWH system was synthesised through an extensive literature review for future adaptation. The various analyses and results in ranking the socio-economic and technical barriers to SWH system integration into smart cities connotes ageing infrastructure; the lack of proactive maintenance; and a lack of finance as the biggest challenges to efficient stormwaterharvesting system implementation. The study concludes that SWH presents a viable alternate source for water that might improve urban water self-sufficiency sustainability under different climatic smart city assessments, whilst recommending capacity development where climate change experts transfer knowledge, skills and expertise to upcoming researchers.Item Development and evaluation of woven fabric immersed membrane bioreactor for treatment of domestic waste water for re-use(2014) Cele, Mxolisi Norman; Rathilal, Sudesh; Pillay, Visvanathan LingamurtiIncreased public concern over health and the environment, the need to expand existing wastewater treatment plants due to population increase, and increasingly stringent discharge requirements, have created a need for new innovative technologies that can generate high quality effluent at affordable cost for primary and secondary re-use. The membrane biological reactor (MBR) process is one of the innovative technologies that warrant consideration as a treatment alternative where high quality effluent and/or footprint limitations are a prime consideration. MBR processes have been applied for the treatment of industrial effluent for over ten years (Harrhoff, 1990). In this process, ultrafiltration or microfiltration membranes separate the treated water from the mixed liquor, replacing the secondary settling tanks of the conventional activated sludge process. Historically, energy costs associated with pumping the treated water through the membranes have limited widespread application for the treatment of high volumes of municipal wastewater. However, recent advancements and developments in membrane technology have led to reduced process energy costs and induced wider application for municipal wastewater treatment (Stephenson et al., 2000). This report describes a small and pilot scale demonstration study conducted to test a woven fabric microfiltration immersed membrane bioreactor (WFM-IMBR) process for use in domestic wastewater treatment. The study was conducted at Durban Metro Southern Wastewater Treatment Works, Veolia Plant, South Africa. The main objective of this project was to develop and evaluate the performance of an aerobic woven fabric microfiltration immersed membrane bioreactor (WFM-IMBR) for small scale domestic wastewater treatment. The experiments were oriented towards three sub objectives: to develop the membrane pack for immersed membrane bioreactor based on WF microfilters; to evaluate the hydrodynamics of WF membrane pack for bioreactor applications; and to evaluate the long-term performance and stability of WFM-IMBR in domestic waste water treatment. The literature was reviewed on membrane pack design for established commercial IMBR. The data collected from literature was then screened and used to design the WF membrane pack. Critical flux was used as the instrument to measure the WF membrane pack hydrodynamics. Long-term operation of the WFM-IMBR was in two folds: evaluating the performance and long term stability of WFM-IMBR. The membrane pack of 20 flat sheet rectangular modules (0.56 m by 0.355 m) was developed with the gap of 5 mm between the modules. The effects of parameters such as mixed liquor suspended solids or aeration on critical flux were examined. It was observed that the critical flux decreased with the increase of sludge concentration and it could be enhanced by improving the aeration intensity as expected and in agreement with the literature. Hence the operating point for long term subcritical operation was selected to be at a critical flux of 30 LMH and 7.5 L/min/module of aeration. Prior to the long term subcritical flux of WFM-IMBR, the operating point was chosen based on the hydrodynamic study of the WF membrane pack. The pilot scale WFM-IMBR demonstrated over a period of 30 days that it can operate for a prolonged period without a need for cleaning. Under subcritical operation, it was observed that there was no rise in TMP over the entire period of experimentation. Theoretically this was expected but it was never investigated before. Good permeate quality was achieved with 95% COD removal and 100% MLSS removal. The permeate turbidity was found to be less than 1 NTU and it decreased with an increase in time and eventually stabilized over a prolonged time. Woven fibre membranes have demonstrated great potential in wastewater treatment resulting in excellent COD and MLSS removal; low permeate turbidity and long term stability operation. From the literature surveyed, this is the first study which investigated the use of WF membranes in IMBRs. The study found that the small scale WFM-IMBR unit can be employed in fifty equivalence person and generate effluent that is free of suspended solids, having high levels of solid rejection and has acceptable discharge COD for recycle. Future work should be conducted on energy reduction strategies that can be implemented in WFM-IMBR for wastewater treatment since high energy requirements have been reported by commercial IMBRs.
- «
- 1 (current)
- 2
- 3
- »