Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Fusion in cryptocurrency price prediction: a decade survey on recent advancements, architecture, and potential future directions
    (Institute of Electrical and Electronics Engineers (IEEE), 2022) Patel, Nisarg P.; Parekh, Raj; Thakkar, Nihar; Gupta, Rajesh; Tanwar, Sudeep; Sharma, Gulshan; Davidson, Innocent E.; Sharma, Ravi
    Cryptographic forms of money are distributed peer-to-peer (P2P) computerized exchange mediums, where the exchanges or records are secured through a protected hash set of secure hash algorithm-256 (SHA-256) and message digest 5 (MD5) calculations. Since their initiation, the prices seem highly volatile and came to their amazing cutoff points during the COVID-19 pandemic. This factor makes them a popular choice for investors with an aim to get higher returns over a short span of time. The colossal high points and low points in digital forms of money costs have drawn in analysts from the scholarly community as well as ventures to foresee their costs. A few machines and deep learning algorithms like gated recurrent unit (GRU), long short-term memory (LSTM), autoregressive integrated moving average with explanatory variable (ARIMAX), and a lot more have been utilized to exactly predict and investigate the elements influencing cryptocurrency prices. The current literature is totally centered around the forecast of digital money costs disregarding its reliance on other cryptographic forms of money. However, Dash coin is an individual cryptocurrency, but it is derived from Bitcoin and Litecoin. The change in Bitcoin and Litecoin prices affects the Dash coin price. Motivated from these, we present a cryptocurrency price prediction framework in this paper. It acknowledges different cryptographic forms of money (which are subject to one another) as information and yields higher accuracy. To illustrate this concept, we have considered a price prediction of Dash coin through the past days’ prices of Dash, Litecoin, and Bitcoin as they have hierarchical dependency among them at the protocol level. We can portray the outcomes that the proposed scheme predicts the prices with low misfortune and high precision. The model can be applied to different digital money cost expectations.
  • Thumbnail Image
    Item
    Deep learning-based cryptocurrency price prediction scheme with inter-dependent relations
    (Institute of Electrical and Electronics Engineers (IEEE), 2021) Tanwar, Sudeep; Patel, Nisarg P.; Patel, Smit N.; Patel, Jil R.; Sharma, Gulshan; Davidson, Innocent Ewaen
    Blockchain technology is becoming increasingly popular because of its applications in various fields. It gives an edge over the traditional centralized methods as it provides decentralization, immutability, integrity, and anonymity. The most popular application of this technology is cryptocurrencies, which showed a massive rise in their popularity and market capitalization in recent years. Individual investors, big institutions, and corporate firms are investing heavily in it. However, the crypto market is less stable than traditional commodity markets. It can be affected by many technical, sentimental, and legal factors, so it is highly volatile, uncertain, and unpredictable. Plenty of research has been done on various cryptocurrencies to forecast accurate prices, but the majority of these approaches can not be applied in real-time. Motivated from the aforementioned discussion, in this paper, we propose a deep-learning-based hybrid model (includes Gated Recurrent Units (GRU) and Long Short Term Memory (LSTM)) to predict the price of Litecoin and Zcash with inter-dependency of the parent coin. The proposed model can be used in real-time scenarios and it is well trained and evaluated using standard data sets. Results illustrate that the proposed model forecasts the prices with high accuracy compared to existing models