Faculty of Engineering and Built Environment
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9
Browse
4 results
Search Results
Item Development of a multi-criteria decision-support tool for improving water quality to assist with engineering infrastructure and catchment management(2024-05) Ngubane, Zesizwe; Sokolova, Ekaterina; Stenström, Thor-Axel; Dzwairo, BloodlessResearch combining water quality modelling, quantitative chemical/microbial risk assessment, and stakeholder engagement to prioritise catchment areas facing water pollution problems to devise effective pollution mitigation strategies are limited. This research therefore aimed to address this gap by providing a practical and comprehensive framework that supports wellinformed decision-making processes in water pollution alleviation. By integrating multiple criteria and catchment aspects, this framework can assist infrastructure, operational, and ecological managers within a catchment in prioritising best management practices (BMPs) to reduce pollution and mitigate against potential resultant impacts. Given this context, uMsunduzi catchment, in KwaZulu-Natal, South Africa was chosen as a study site. UMsunduzi River is a major tributary of uMngeni River that is used for water supply to the cities of Pietermaritzburg and Durban. The study begins with the data synthesis from diverse sources of scientific data to identify chemical and microbial hazards, utilising a water quality modelling tool to map point and nonpoint source pollution in the catchment. The assessment encompasses the presence of pathogens such as Cryptosporidium and Escherichia coli (E. coli) in the catchment, with rural areas showing a greater contribution from animal sources, while urban areas are affected by impaired wastewater infrastructure. Quantitative microbial risk assessment (QMRA) was conducted, assuming no water treatment within the catchment. The investigation considered multiple exposure routes, including domestic drinking and recreational activities for both adults and children. The results indicate that the probability of infection from Cryptosporidium and E. coli exceeds acceptable levels set by South African water quality guidelines and the World Health Organization. The assessment further included a chemical risk assessment on various chemical groups, including organochlorinated pesticides (OCPs), pharmaceuticals and personal care products (PPCPs), heavy metals, nitrates, and phosphates. Elevated carcinogenic risks were observed for most OCPs, while noncarcinogenic pesticide effects pose long-term risks. Heavy metals and PPCPs are within sub-risk levels, but phosphates have notable ecological and health impacts, particularly in Inanda Dam, a key source of potable water for Durban. In this study, a unique contribution is made by incorporating both chemical and microbial risk assessment. Furthermore, the risk assessment methodology not only encompasses various chemical pollutants and exposure pathways but addresses the nuanced issue of water consumption variability between children and adults. To address these identified risks, a multi-criteria decision analysis methodology is employed to engage stakeholders in the risk management process. Affected, involved, and interested stakeholders, along with economic, environmental, and social criteria, contribute to the selection of Best Management Practices (BMPs). The Simple Multi-Attribute Rating Technique for Enhanced Stakeholder Take-up (SMARTEST) is utilised to identify suitable interventions. The study culminates in the recommendation of BMPs that aim to change behaviour, including public education on livestock grazing management, safe medication disposal, and responsible fertilizer and pesticide use. Pollution management measures, such as solid waste control and river cleanup, are suggested, along with infrastructure management improvements, like sewer system maintenance. This research strived to bridge the gap in water pollution alleviation by presenting a practical and comprehensive framework designed to support well-informed decision-making processes. This framework, with its integration of multiple criteria and considerations, stands poised to aid infrastructure, operational, and ecological managers within a catchment in prioritising BMPs aimed at reducing pollution and mitigating resultant health impacts.Item Quantitative assessment of human health risks from chemical pollution in the uMsunduzi River, South Africa(Springer, 2023-10-24) Ngubane, Zesizwe; Dzwairo, Bloodless; Sokolova, Ekaterina; Moodley, Brenda; Stenstrom, Thor AxelA quantitative chemical risk assessment was performed using published data as well as data from the official monitoring programme for the uMsunduzi River in KwaZulu-Natal, South Africa. The chemicals assessed were organochlorinated pes- ticides (OCPs), pharmaceuticals and personal care products (PPCPs), heavy metals, and nitrates and phosphates. The water from uMsunduzi River is used locally without treatment. Consequently, the exposure routes investigated were via ingestion during domestic drinking and incidental ingestion during recreational activities, which were swimming and non-competitive canoeing, for both adults and children. For the individual chemicals, non-carcinogenic risks using the hazard quotient (HQ) and carcinogenic risks using the cancer risk (CR) were quantified. It was found that the exposed population is likely to experience non-carcinogenic effects from pesticides and phosphates, but not from PPCPs, heavy metals and nitrates. This study also found that the carcinogenic risks for OCPs were higher than the tolerable limit of 10-5, while for lead the risk was below the tolerable limit. Some of the activities that potentially contribute to chemicals onto the uMsunduzi River are sub- sistence farming, small plantations, illegal dumping, industries, and broken sewers. The findings of this study may act as the technical foundation for the introduction of pollution reduction measures within the catchment, including public educationItem Assessing the impact of undergraduate research on graduate attributes development : a case study of DUT Civil Engineering Students(Durban University of Technology, 2022) Ngubane, Zesizwe; Hay, Shanley; Adedeji, Jacob AdedayoEngineering graduates are expected to demonstrate competence after their engineering programmes in the form of graduate attributes (GAs) prescribed by the Engineering Council of South Africa (ECSA). It has, however, been challenging to develop and assess these attributes, especially using conventional assessment or examination methods, just as on the global scale. Nevertheless, studies have demonstrated that undergraduate research enables students to develop independent critical skills, as they do in graduate studies, by identifying a problem that needs to be solved. Undergraduate research has not been widely explored as a tool in developing and accessing GAs in engineering students. This study examined the impact of undergraduate research in engineering student ECSA GAs development and assessment using a case study of civil engineering diploma students. Therefore, using purposeful quantitative sampling methods, first-year and second-year diploma students were interviewed on their experience with newly introduced undergraduate research. Observations of the students' responses indicated that students' understanding, and views of GAs do improve from the first year to the second year due to continuous exposure to research. A conceptual model for assessing and developing GAs among engineering students is proposed in this study. This conceptual framework can assist in the further development of strategies in the implementation of undergraduate research at universities of technology.Item Water quality modelling and quantitative microbial risk assessment for uMsunduzi River in South Africa(IWA Publishing, 2022-04) Ngubane, Zesizwe; Bergion, Viktor; Dzwairo, Bloodless; Troell, Karin; Amoah, Isaac Dennis; Stenstrom, Thor Axel; Sokolova, EkaterinaSouth African rivers generally receive waste from inadequate wastewater infrastructure, mines, and farming activities, among others. The uMsunduzi River in KwaZulu-Natal, South Africa, is among these recipients with recorded poor to very poor water quality. To identify parts of the uMsunduzi River that are polluted by Cryptosporidium and Escherichia coli (E. coli), this study mapped out pollutants emanating from point and non-point sources using the Soil and Water Assessment Tool (SWAT). Streamflow calibration in the upper and lower reaches of the catchment showed good performance with R2 of 0.64 and 0.58, respectively. SWAT water quality output data were combined with a Quantitative Microbial Risk Assessment (QMRA) to understand the microbial health implications for people using river water for drinking, recreational swimming, and non-competitive canoeing. QMRA results for Cryptosporidium and pathogenic E. coli showed that the probability of infection for most users exceeds the acceptable level for drinking and recreation as outlined in the South African water quality guidelines, and by the World Health Organization (WHO). The results of this study can be used as a baseline to assess the economic and health implications of different management plans, resulting in better-informed, cost-effective, and impactful decision-making.