Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Prospects of synthesized magnetic TiO2-based membranes for wastewater treatment : a review
    (MDPI AG, 2021-06) Tetteh, E. Kweinor; Rathilal, S.; Asante-Sackey, D.; Chollom, Martha Noro
    Global accessibility to clean water has stressed the need to develop advanced technologies for the removal of toxic organic and inorganic pollutants and pathogens from wastewater to meet stringent discharge water quality limits. Conventionally, the high separation efficiencies, relative low costs, small footprint, and ease of operation associated with integrated photocatalytic-membrane (IPM) technologies are gaining an all-inclusive attention. Conversely, photocatalysis and membrane technologies face some degree of setbacks, which limit their worldwide application in wastewater settings for the treatment of emerging contaminants. Therefore, this review elucidated titanium dioxide (TiO2), based on its unique properties (low cost, non-toxicity, biocompatibility, and high chemical stability), to have great potential in engineering photocatalytic-based membranes for reclamation of wastewater for re-use. The environmental pathway of TiO2 nanoparticles, membranes and configuration types, modification process, characteristics, and applications of IPMs in water settings are discussed. Future research and prospects of magnetized TiO2-based membrane technology is highlighted as a viable water purification technology to mitigate fouling in the membrane process and photocatalyst recoverability. In addition, exploring life cycle assessment research would also aid in utilizing the concept and pressing for large-scale application of this technology.
  • Thumbnail Image
    Item
    Pilot study of a horizontal roughing filtration system treating greywater generated from a peri-urban community in Durban, South Africa
    (IWA Publishing, 2019-02-19) Bakare, B. F.; Mtsweni, S.; Rathilal, S.
    There is a growing pressure on the available freshwater resources in South Africa and many other countries around the world. This has led to a large scale of interest in the application of water reclamation and reuse of wastewater as alternative water supply sources. This is becoming critical to sustain development and economic growth in the southern Africa region. This study investigated the performance of a horizontal roughing filtration system treating greywater generated from a peri-urban settlement in Durban, South Africa. The horizontal roughing filtration system consists of three compartments containing different sizes of gravels that serve as the filter media. The horizontal roughing filter was operated at a filtration rate of 0.3 m/hr for 90 days. The results indicated that at this low filtration rate, effective reduction in turbidity, conductivity, chemical oxygen demand and total solids can be achieved. Overall average removal efficiencies of 90% turbidity, 70% chemical oxygen demand, 86% conductivity, and 84% total solids were obtained for the entire duration of operation of the horizontal roughing filtration system. Thus, it was concluded that the horizontal roughing filtration system is suitable for the treatment of greywater for non-potable reuse applications although further investigation needs to be conducted for the microbial removal during the treatment.
  • Thumbnail Image
    Item
    Performance of horizontal roughing filter using principal component regression and multiple linear regression treating informal settlement greywater
    (WCECS, 2019) Mtsweni, S.; Bakare, B. F.; Rathilal, S.
    Water scarcity remain a major challenge facing many countries around the world. These water challenges results to seeking other possible water alternatives techniques to save available water. Greywater reuse is one such alternative to save water if it can be treated successfully to meet greywater standards for reuse. However, within the usability of greywater at the core is the ability to monitor its quality during treatment that will meet the required standard of water for reuse particularly when water reuse alternatives are considered. The aim of the this paper is to demonstrate beyond the potential usability of the Horizontal Roughing Filter (HRF) which was identified as a possible greywater reuse treatment option/technology while monitoring its performance and effluent greywater quality using principal component approach and principal component regression techniques in HRF as a tool of provision of possible practical solution in community facing water challenges. The study was conducted using a pilot scale HRF to treat informal settlement greywater in the study area in Durban Umlazi, Southern Africa. Results showed that HRF was able to achieve removal efficiency of turbidity in greywater effluent above 90% at a filtration ate of 0.3 m/h and 60% chemical oxygen demand (COD). The predictor variables were temperature, COD, conductivity, total solids and pH. The principal component regression was more robust to identify performance relationship in the data better than multiple linear regression.
  • Thumbnail Image
    Item
    Photocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using response methodology
    (Springer Science and Business Media LLC, 2020-06) Tetteh, E. K.; Rathilal, S.; Naidoo, D. B.
    The photocatalytic degradation of a local South Africa oil refinery wastewater was conducted under UV radiation using an aqueous catalyst of titanium dioxide (TiO2), Degussa P25 (80% anatase, 20% rutile) in suspension. The experiment was carried out in a batch aerated photocatalytic reactor based on a central composite design (CCD) and analyzed using response surface methodology (RSM). The effects of three operational variables viz. TiO2 dosage (2-8 g/L), runtime (30-90 minutes), and airflow rate (0.768-1.48 L/min) were examined for the removal of phenol and soap oil and grease (SOG). The data derived from the CCD, and the successive analysis of variance (ANOVA) showed the TiO2 dosage to be the most influential factor, while the other factors were also significant (P < 0.0001). Also, the ANOVA test revealed the second-order of TiO2 dosage and runtime as the main interaction factors on the removal efficiency. To maximize the pollutant removal, the optimum conditions were found at runtime of 90 minutes, TiO2 dosage of 8 g/L, and an aeration flow rate of 1.225 L/min. Under the conditions stated, the percentage removal of phenol (300 ± 7) and SOG (4000 ± 23) were 76% and 88% respectively. At 95% confidence level, the predicted models developed results were in reasonable agreement with that of the experimental data, which confirms the adaptability of the models. The first-order kinetic constants were estimated as 0.136 min-1 and 0.083 min-1 for SOG and phenol respectively.