Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Advanced distributed cooperative secondary control of Islanded DC Microgrids
    (MDPI AG, 2022-05-28) Aluko, Anuoluwapo; Buraimoh, Elutunji; Oni, Oluwafemi Emmanuel; Davidson, Innocent Ewean
    In an islanded DC microgrid with multiple distributed generators (DGs), the droop control is employed to realize proportional current sharing among the DGs in the microgrid. The action of the droop control causes a deviation in the DC bus voltage which is exacerbated by the line impedance between the DG and the DC bus. In this paper, an advanced distributed secondary control scheme is proposed to simultaneously achieve accurate voltage regulation and cooperative current sharing in the islanded DC microgrid system. The proposed distributed secondary controller is introduced in the cyber layer of the system, and each controller shares information with neighbouring controllers via a communication network. The distributed technique maintains the reliability of the overall system if some part of the communication link fails. The proposed controller uses the type-II fuzzy logic scheme to adaptively select the secondary control parameters for an improved response of the controller. The sufficient conditions to guarantee the stability of the proposed controller are derived using the Lyapunov method. Comprehensive tests under different operating scenarios are conducted to demonstrate the robustness of the proposed control scheme.
  • Thumbnail Image
    Item
    Enhancing the performance of Eskom’s Cahora Bassa HVDC Scheme and Harmonic Distortion Minimization of LCC-HVDC Scheme using the VSC-HVDC link
    (MDPI AG, 2022-04-20) Davidson, Innocent Ewean; Oni, Oluwafemi Emmanuel; Aluko, Anuoluwapo; Buraimoh, Elutunji
    Cahora Bassa, a thyristor-based High Voltage Direct (HVDC) link, transmits 1920 MW of power from a hydro-power plant in Zambezi River, north of Mozambique, to Apollo Substation in Johannesburg, South Africa. The high degree of harmonics distortion that is transferred into the AC side of the transmission network and the continuous increase in the rate at which commutation failure occurs during systems disturbance are both flaws in the utilization of this HVDC converter technology. AC and DC filters with rugged controllers are often used to minimize this effect but are limited in scope. Modern converter technology, such as the Voltage Source Converter (VSC), was proposed in this study to reduce harmonics content level, increase power transfer capabilities, enhance network stability, and reduce the rate of commutation failure occurrence. This paper, therefore, evaluates the performance analysis of the Cahora Bassa HVDC link and its level of harmonic distortion in the line commutated converters. A proposed method of utilizing VSC HVDC is provided as a suitable solution using three modular-level voltage source converter technology. Current and voltage waveform characteristics during a three-phase short circuits fault were analyzed, and the latest developments in the area of VSC HVDC were discussed. The results show a lower total harmonics distortion with the usage of VSC HVDC converter technology at the inverter station. The continuous occurrence of commutation failure was minimized by implementing a new converter architecture. The network simulation and analysis were carried out using the DIgSILENT PowerFactory engineering software tool.