Faculty of Engineering and Built Environment
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9
Browse
2 results
Search Results
Item The applicability of nanofiltration for the treatment and reuse of textile reactive dye effluent(AJOL, 2015) Chollom, Martha Noro; Rathilal, Sudesh; Pillay, Visvanathan Lingamurti; Alfa, DorcasThe main aim of the study was to test the feasibility of using nanofiltration (NF) processes for the treatment of reactive dye-bath effluents from the textile industry, in order to recover the water and chemicals (salts) for reuse purposes. The study of the reusability of nanofiltered water for dyeing has been given little or no attention. About 30% of reactive dyes remain unfixed on fibres; the unfixed dyes are responsible for the colouration in effluents. Membrane processes were employed to treat reactive dye-bath effluents to recover the salts and water. Investigations were conducted firstly with ultrafiltration (UF) used as a pre-treatment for NF. Secondly, evaluations were performed for 2 types of NF membranes (SR90 and NF90), in terms of quality of permeate produced and fluxes achieved for 2 different samples of effluent. The effect of cleaning on membrane performance was assessed. A reusability test was carried out on both permeate samples for dyeing light and dark shade recipes. The use of UF as pre-treatment to NF resulted in rejection of colloidal substances > 90% and a 15% flux improvement. Permeate from NF90 had a conductivity of 76 µS/cm and total organic carbon (TOC) of 20 mg/ℓ, as compared to SR90 which had a conductivity of 8.3 mS/cm and a TOC of 58 mg/ℓ. Light shade from NF90 gave satisfactory results on dyeing, with no colour difference. However a variation in colour was noticed when the medium sample was used to dye the light shade. Both NF permeates gave satisfactory results when used to dye the dark shades. Permeate from NF90 was within the accepted range for reuse, while permeate from SR90 had a higher salt recovery. Chemical cleaning resulted in 80% flux recovery. From the reusability test it was concluded that permeate from NF90 met the reuse criteria for feed water to the dye bath.Item Treatment and reuse of reactive dye effluent from textile industry using membrane technology(2014) Chollom, Martha Noro; Rathilal, Sudesh; Pillay, Visvanathan LingamurtiThe textile industry consumes large volumes of water and in turn produces substantial quantities of polluted effluents. Approximately 30% of reactive dyes used during the textile processing remain unfixed on fibres and are responsible for the colouration in effluents. Various conventional methods are being used to treat textile effluent. However, the disadvantage of these methods is that total colour removal is not achieved and chemical by-products are introduced from the use of chemicals. The water quality produced therefore does not meet the requirement for textile reuse. Membrane based processes provide interesting possibilities of separating hydrolysed dye stuff and dyeing auxiliaries, thereby reducing colouration and COD content. They can be employed to treat reactive dye bath effluent to recover the salts and water for the purpose of reuse. This study aimed at integrating membrane processes into the reactive dye bath of a textile industry. The objectives were to determine the quality of permeate produced in terms of removal of organics, ascertain its reusability for dyeing, investigate the production rate in terms of permeate fluxes and finally to investigate the cleanability and flux recovery of the membranes. Three effluent samples were chosen for this study based on the dyeing recipe; Light shade, Medium shade and Dark shade. Ultrafiltration (UF) and Nanofiltration (NF) membrane processes were employed to treat the reactive dye bath effluents to recover the salts and water. Investigations were conducted firstly with UF as a pre-treatment to NF. Secondly, evaluations were carried out on the performance of two types of NF membranes (SR90 and NF90) in terms of permeate quality and fluxes for the investigated samples. The effect of cleaning on membrane performance was done. A reusability test was carried out on the permeate samples for dyeing. It was found that the use of UF as a pre-treatment yielded an increase in permeate of 5–25% of the NF fluxes and 90% in organics reduction for all treated samples, hence increasing the water recovery. High rejection of ˃90% by NF90 for COD, TOC and colour were obtained for all the treated samples. SR90 rejection was 80–90% for colour and ˃90% for COD and TOC. Salt recovery for NF90 was 60–90% and for SR90 was 40–50%. The reusability tests carried out showed that permeate recycled from NF90 can be used for any section in the textile industry including the most critical such as dyeing on light shades, while that from SR90 can be used for dyeing dark shades only. It was then concluded that membrane based processes can be integrated into the dye bath of the textile process for the purpose of reuse, thereby saving on the cost of chemicals (salts), reducing fresh water usage and reducing the extent of final effluent treatment.