Faculty of Engineering and Built Environment
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9
Browse
2 results
Search Results
Item Privacy and security for applications and services in future generation smart grids(2022-05-13) Khumalo, Zephania Philani; Nleya, B.Growing energy demands together with the urge to supply available power in a reliable, as well as efficient manner, has led to the gradual upgrading and modernizing of existing power grid systems into Smart Grids (SGs) by way of incorporating supporting information and communication technology (ICT) subsystems. The latter facilities the two-way flow of both energy (power) and information related to the grid's performance, as well as the end user's requirements. Notably, the ICT subsystem enables key entities such as generation, distribution, transmission, and end-user subsystems to interrelated in real-time, and in the process, this achieving a well reliable, robust as well as efficiently managed SG system. The interactions of the various entities constituting the grid result in the emergence of various services and applications exchanging data throughout the interconnected systems. Whereas the SG is quite efficient in rendering its services, it, however, is exposed to various cyber security threats by adversaries. Notably, security threats vary depending on the applications. On the user end networks, the mandatory aggregation of power consumption as well as exchange of power consumption-related information on individual household area networks (HANs) or among HANs and utility's control canter (CC) can result in adversaries tempering with the processes. In particular key security concerns being that during these operations, individuals' privacy, as well as aggregated data integrity, can be compromised as a result of attacks. The resource-constrained nature of associated devices, objects, and elements of the SG at the user side networks and in the SG core, in general, brings about challenges in implementing robust security measures that inevitably involve the performing of complex crypto-operations.Item Secured Power Line Communication based network for advanced metering in Smart Grid(2018-07) Khumalo, Zephania Philani; Nleya, BakheA Smart Grid (SG) generally refers to a modernized power grid system that incorporates Infor mation and Communications Technologies (ICT) so that a two way communication between the grid system (utility) and power users ensures power supply efficiency and optimization to the users. In a way, an SG is an evolved version of legacy power grid systems that manages electricity de mand in a sustainable, reliable and economic manner, built on advanced infrastructure and tuned to facilitate the integration of all involved. The provisioning of duplex communication between the utility and itsusers (customers) allows key devicessuch as SMs to interact directly with the utility 's control center (CC). SGs are destined for provisioning a cleaner environmental sustainable and renewable energy for the future. Its successes mostly rely on advanced ICT design and architecture. It is imperative that it meets the future data transmission and design performance requirements in terms ofrobustness, reliability, and at the same time ensuring end-to-end data exchanges with min imal latencies and losses. The incorporation oflCT, however, results in security and access control challenges, as a result complex network arrangement may be exploited by hackers among other things, access private information and sensitive data, hence the necessity to address vulnerabilities of such systems. Typ ical consequences or repercussions of security and access control threats include energy theft by way of altering of SM data. At present, it is cost effective to implement the ICT related infrastruc ture on the currently unused power line spectrum (i.e. above 50Hz) hence in this work, Power Line Communication (PLC) is elected for provisioning this platform. As such, PLC implementation shall imply the digital communication in power lines concurrently with electrical power transmission and ensuring uninterruption of either of the services, as well as guaranteed efficiency. We address approaches to increasing the data rate of transmission and re duction of bit error rates. That will enhance the performance of PLC and redevelopment ofreliable JCT without additional cost to the existing infrastructure of electrical grids. We also address secu rity and access control by implementing Advanced Encryption Standard (AES) protocol to secure SG related data in our proposed security and access control framework. Results show that the sys tem has low computational requirements, minimal latency and as well ensures confidentiality and integrity. The simulation is run on a combined MATLAB/ OPNET platform.