Faculty of Engineering and Built Environment
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9
Browse
5 results
Search Results
Item Barrier and biodegradable properties of corn starch-derived biopolymer film filled with nanoclay fillers(SAGE Publications, 2016-12-18) Mohan, T. P.; Devchand, Kay; Kanny, KrishnanThe objective of this work is to study the effect of nanoclay fillers on the biodegradation and barrier properties of corn starch polymer-based biofilm. Starch derived from corn plant source was used to prepare a biofilm by plasticization method. The barrier properties, namely, water absorption, moisture permeation, oxygen permeation and swelling of unfilled and nanoclay-filled corn starch biofilms were examined. The results indicate: ∼22% reduced water absorption, 40% reduced moisture uptake, 30% reduced oxygen permeation and 31% reduced swelling for 2–3 wt.% nanoclay-filled biofilm, when compared with unfilled biopolymer. The biodegradation result of unfilled and nanoclay-filled film series indicates that the nanoclay addition delays the biodegradation and is a function of nanoclay content in the film. The tensile, dynamic mechanical analysis and biodegradable studies were conducted on the biopolymers before and after water absorption, and the result shows that the nanoclay-filled biopolymer increased these properties when compared with unfilled biopolymer even after water absorption and is dependent on the nanocomposite structure and morphology as examined by X-ray diffraction and transmission electron microscopy analysis.Item Reuse of cured epoxy as a reinforcement in an epoxy composite(Wiley, 2013) Mohan, T. P.; Kanny, KrishnanThis article discusses the reuse of a thermoset-based epoxy polymer. In this method, cured epoxy polymer is ground to powder of particle size ranging from 1 to 30 μm. The ground epoxy is then filled in an epoxy polymer to form an epoxy–epoxy composite system using both room and high temperature processing. The amount of filler material was varied from 1 to 10 wt% in the epoxy matrix. Rheology and tensile properties test were then performed. The result shows that the room temperature-processed epoxy composites (above 5 wt% of powders) resulted in the formation of voids, agglomeration of particles, and reduced degree of cure leading to a decrease in tensile properties. These drawbacks (voids, agglomeration, and low degree of cure) were correspondingly absent in composites processed at high temperature. Results from this work suggest that the thermoset polymer can be reused effectively with minimal changes to the unfilled resin properties. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics EngineersItem Melt blend studies of nanoclay-filled polypropylene (PP)–high- density polyethylene (HDPE) composites(Springer, 2013) Mohan, T. P.; Kanny, KrishnanThe objective of this work is to study how the rheological factors of unfilled and nanoclay-filled HDPE– PP blend series influence the structure, morphology, and mixing characteristics. For this study, a series of HDPE–PP blends (0–100 wt % HDPE), with and without nanoclay, was prepared by using melt-mixing method. Nanoclay was varied from 0 to 5 wt % in all the blend and polymer series. The rheological properties were examined by melt viscosity, scanning electron microscopy, and theory of mixing. The result indicated that the viscosity of the blend increased as HDPE and nanoclay content increased, and also affected the structure and morphology of the resulting blend. The thermal properties were examined by using differential scanning calorimetry and suggest improved crystalline and melting characteristics of PP and PP-rich phase of blend. The structure of nanoclay-filled blend was examined by X-ray diffraction and transmission electron microscopy, confirming the formation of nanocomposite with improved tensile properties.Item Chemical treatment of sisal fiber using alkali and clay method(Elsevier, 2012-07-24) Mohan, T. P.; Kanny, KrishnanIn this study the chemical treatment of sisal fiber using the combined alkali (NaOH) and clay is discussed. The purpose of this fiber treatment is to improve the fiber–matrix compatibility, interface strength, mechanical, thermal and water barrier properties. The phase change due to chemical treatment of raw sisal fiber was examined by Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) methods. The result shows the presence of about 20 wt.% clays in NaOH–clay treated sisal fiber with 2.6 reduced water uptake and also with improved mechanical and thermal properties. Subsequently the treated and untreated fibers were reinforced in polypropylene (PP) matrix and the mechanical and thermal properties were examined. The result indicates that the fiber–matrix interface strength, adhesion, glass transition temperature and tensile properties of composites were improved in NaOH–clay treated fiber composites.Item Effect of nanoclay in HDPE–glass fiber composites on processing, structure, and properties(Taylor and Francis, 2012-10-23) Mohan, T. P.; Kanny, KrishnanNatural Na+ montmorillonite (MMT) microclay and organo-treated MMT nanoclay were independently filled in a high-density polyethylene (HDPE) polymer and HDPE–glass fiber (GF) composite and the rheological and mechanical properties were examined. The addition of nanoclay in the HDPE polymer and HDPE–GF composite increased the melt viscosity, rate of crystallization, and crystalline fraction. Addition of Na+ MMT clay on the other hand did not affect the crystalline properties, but increased the melt viscosity marginally. The composite was also examined after the addition of a polyethylene-grafted maleic anhydride-based compatibilizer. It was found that the compatibilizer improved the dispersion of clay particles in the polymer matrix which in turn affected the rheological and mechanical properties of the composite. Improved tensile and wear properties were observed in nanoclay-filled composites when compared to microclay-filled composites.