Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Resin infusion analysis of nanoclay filled glass fiber laminates
    (Elsevier, 2013-11-13) Kanny, Krishnan; Mohan, T. P.
    This paper focuses on the resin flow characteristics of nanoclay filled glass fiber laminates processed by Vacuum Assisted Resin Infusion Molding (VARIM). Laminates with varying quantities of nanoclays (0–5 wt.%) were prepared and the effect of these nanoclays on the epoxy resin flow characteristics was studied. It was found that the flow rate of resin continuously decreased as nanoclay content continuously increased. The reduction in the flow rate was attributed to the rate of change of curing and the subse-quent change in viscosity of the nanoclay filled resin. Analysis of infusion process by Darcy’s law show that the permeability of the fiber decreased in the nanoclay filled resin system. Nanoclay filled laminates show improved static and dynamic mechanical properties than that of unfilled resin composites.
  • Thumbnail Image
    Item
    Infrared heating assisted thermoforming of polypropylene clay nanocomposites
    (Springer-Verlag, 2014-06-18) Mohan, T. P.; Kanny, Krishnan
    The objective of this work is to study the influence of nanoclay addition in PP sheet during infrared (IR) heating assisted thermoforming process. The effect of nanoclay on viscoelastic, friction and dimensional characteristics during sheet forming was examined. The result indicated that the nanoclay addition improves the sagging (sagging depth and sagging disintegration) and plugging (plug depth and friction) properties during sheet forming. The plugging properties of nanoclay filled PP sheet resulted in the improved physical characteristics (minimal change in thickness (Δt) and % di-mensional elongation) when compared with unfilled PP sheet. The nanoclay filled formed PP sheet resulted in improved tensile and dynamic mechanical properties when compared with unfilled formed PP sheet
  • Thumbnail Image
    Item
    Machinability study of hybrid nanoclay-glass fibre reinforced polyester composites
    (2013) Prabhu, P.; Jawahar, P.; Balasubramanian, M.; Mohan, T. P.
    Glass fibre reinforced polyester composites (GRP) and hybrid nanoclay and glass fibre reinforced polyester nanocomposites (CGRP) are fabricated by vacuum assisted resin infusion technique. The optimum mechanical properties are obtained for CGRP with 3 wt.% nanoclay. Three types of drills (carbide twist drill D 5407060, HSS twist drill BS-328, and HSS end mill (4 flutes “N”-type end mill RH-helical flute)) of 6 mm diameters are used to drill holes on GRP and CGRP. Three different speeds (600, 852, and 1260 rpm) and two different feeds (0.045, 0.1 mm/rev) are selected as process parameters. The effect of process parameter on thrust force and delamination during drilling CGRP is analyzed for optimizing the machining parameters. The delamination factor is low for the optimum process parameter (feed = 0.1 mm/rev and speed 852 rpm). Microstructural analysis confirms that at higher feeds, delamination is low for CGRP drilled with carbide tools. In order to analyze the effect of nanoclay in CGRP on tool wear, 200 holes were drilled on CGRP samples with 3 wt.% nanoclay, and the tool wear is analyzed under optimized parametric condition. Tool wear is high in HSS twist drill compared with carbide drill. The presence of nanoclay also accelerates the tool wear.