Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Treatment of industrial mineral oil wastewater – effects of coagulant type and dosage
    (IWA Publishing, 2017) Tetteh, E. Kweinor; Rathilal, Sudesh; Robinson, Kate
    The use of coagulants is essential in the diverse disciplines of conventional water and wastewater treatment. This work aimed to select an economic and effective coagulant, to minimize the cost of treatment and the oil droplet content of the water, thus enhancing the efficiency of a local South African oil refinery effluent plant recovering water and oil for reuse by treating the industrial mineral oil wastewater. A standard dissolved air flotation jar test preceded evaluation of four coagulants, viz. aluminum sulfate (Alum), aluminum chloride, ferric sulfate and ferric chloride. Chemical oxygen demand, soap oil and grease, total suspended solids and turbidity were determined as water quality parameters to check coagulant efficiency. Removal of over 70% was achieved for each parameter. The results obtained at pH 5 and coagulant dose of 50 mg/L showed that alum was the best pretreatment coagulant for destabilizing and minimizing oil droplets in water, due to its trivalent cationic nature. It was also economically viable.
  • Item
    Development and evaluation of a small scale water disinfection system
    (IWA Publishing, 2016-07-08) Alfa, Dorcas; Rathilal, Sudesh; Pikwa, Kumnandi; Chollom, Martha Noro; Pillay, Visvanathan Lingamurti
    Provision of microbiologically safe drinking water for people living in the rural areas of developing countries remains a major challenge to date. A simple gravity-driven membrane point of use system was developed based on woven fabric microfiltration (WFMF) membranes. The WFMF is a loose type of membrane (0.45 μm). However, complete disinfection is not achieved with the WFMF, hence it was incorporated with two disinfectants. This study aimed to combine the WFMF with two disinfectants (Water guard and bromochlor tablets) to bring the water to the accepted quality for drinking. Four different types of water were sourced, considering two factors; E. coli and turbidity content. The WFMF demonstrated excellent filtration performance by producing permeates with turbidity less than 1 NTU for feed turbidity ranging between 10 and 200 NTU. There was 95–99.8% E. coli removal for raw feeds with influent E. coli ranging between 500 and 44,500 CFU/100 mL. Total disinfection was achieved with both disinfectants, however, the effectiveness of the chemical disinfectants in E. coli removal was affected by the quality of water to be disinfected. The study showed that turbidity plays a major role in disinfection performances by increasing chlorine demand on water sources with high turbidity levels.
  • Item
    Evaluation of flux stabilisation using Bio-UF membrane filter on KZN Rivers, South Africa
    (Techno-Press, 2016) Thoola, Maipato Immaculate; Rathilal, Sudesh; Pillay, Lingham V.
    South Africa recognises piped water as the main source of safe drinking water supply. Remote areas do not have access to this resource and they rely solely on surface water for survival, which exposes them to waterborne diseases. Interim point of use solutions are not practiced due to their laboriousness and alteration of the taste. Bio-ultra low pressure driven membrane system has been noted to be able to produce stable fluxes after one week of operation; however, there is limited literature on South African waters. This study was conducted on three rivers namely; Umgeni, Umbilo and Tugela. Three laboratory systems were setup to evaluate the performance of the technology in terms of producing stable fluxes and water that is compliant with the WHO 2008 drinking water guideline with regards to turbidity, total coliforms and E.coli. The obtained flux rate trends were similar to those noted in literature where they are referred to as stable fluxes. However, when further comparing the obtained fluxes to the normal dead-end filtration curve, it was noted that both the Umbilo and Tugela Rivers responded similarly to a normal dead-end filtration curve. The Umgeni River was noted to produce flux rates which were higher than those obtainable under normal dead-end. It can be concluded that there was no stabilisation of flux noted. However, feed water with low E.coli and turbidity concentrations enhances the flux rates. The technology was noted to produce water of less than 1 NTU and 100% removal efficiency for E.coli and total coliforms.