Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 10 of 22
  • Thumbnail Image
    Item
    39th Johannesburg International Conference on “Chemical, Biological and Environmental Engineering” (JCBEE-23) Nov. 16-17, 2023 Johannesburg (South Africa)
    (International Institute of Chemical, Biological & Environmental Engineering (IICBEE), 2023-11-16) Chetty, Manimagalay; Rathilal, Sudesh; Tetteh, Emmanuel; Singh, Nikita
    Abstract—Recent energy demand and environmental concerns associated with fossil fuels makes algae biomass a desirable energy source. Algal biomass has a high organic content and a variety of metabolic properties that make it a promising resource for managing wastewater and sequestering CO₂, in addition to producing profitable biobased products. However, the operation and valorization of algae biomass on a large scale are accompanied by significant costs and setbacks. Therefore, the transition towards a biobased economy requires this study to examine emerging technologies that could utilize algae biomass as an industrialized feedstock from the wastewater settings. A comprehensive analysis of various green technologies of producing high-value products (lipids and hydrocarbons) from algae biomass was reviewed. The fundamental principles that limit the cultivation , extraction, and conversion of different types of algae biomasses for commercialization are discussed. Furthermore, the challenges, future research directions and potential opportunities of valorizing algae biomass was highlighted. It was noted that, exploring algae biomass towards sustainable waste management with resources recovery is viable for industrialization.
  • Thumbnail Image
    Item
    Optimization of photo-catalytic degradation of oil refinery wastewater using Box-Behnken design
    (Korean Society of Environmental Engineers, 2019-02-15) Tetteh, Emmanuel Kweinor; Naidoo, Bisetty Dushen; Rathilal, Sudesh
    The application of advanced oxidation for the treatment of oil refinery wastewater under UV radiation by using nanoparticles of titanium dioxide was investigated. Synthetic wastewater prepared from phenol crystals; Power Glide SAE40 motor vehicle oil and water was used. Response surface methodology (RSM) based on the Box-Behnken Design was employed to design the experimental runs, optimize and study the interaction effects of the operating parameters including catalyst concentration, run time and airflow rate to maximize the degradation of oil (SOG) and phenol. The analysis of variance and the response models developed were used to evaluate the data obtained at a 95% confidence level. The use of the RSM demonstrated the graphical relationship that exists between individual factors and their interactive effects on the response, as compared to the one factor at time approach. The obtained optimum conditions of photocatalytic degradation are the catalyst concentration of 2 g/L, the run time of 30 min and the airflow rate of 1.04 L/min. Under the optimum conditions, a 68% desirability performance was obtained, representing 81% and 66% of SOG and phenol degradability, respectively. Thus, the hydrocarbon oils were readily degradable, while the phenols were more resistant to photocatalytic degradation.
  • Thumbnail Image
    Item
    Fouling control in a woven fibre microfiltration membrane for water treatment
    (Korean Society of Environmental Engineering, 2019-10-11) Chollom, Martha Noro; Rathilal, Sudesh; Pikwa, Kumnandi; May, Lingham
    Korean Society of Environmental Engineers. Current available commercial membranes are not robust and are therefore destroyed if left to dry out or handled roughly. Woven fibre microfiltration (WFMF) membranes have advantages over its competitors with respect to durability, thus, favourable for the developing economies and operation during rough conditions. Evaluation of the effects of aeration and brushing as a flux enhancement strategies for WFMF membrane was the purpose of this study. The WFMF membrane was found to be susceptible to pore plugging by colloidal material and adsorption/attachment by microbiological contaminants. This led to a 50% loss in flux. Aeration as a single flux enhancement strategy proved insufficient to maintain high flux successfully. Therefore combined flux enhancement strategies yielded the best results.
  • Thumbnail Image
    Item
    Anaerobic treatment of slaugterhouse wastewater: evaluating operating conditions
    (WIT Press, 2019-12-11) Chollom, Martha Noro; Rathilal, Sudesh; Swalaha, Feroz Mahomed; Bakare, Babatunde F.; Tetteh, Emmanuel K.
    The aim of the study was to elucidate the effect of process parameters on the performance of an upflow anaerobic sludge blanket reactor (UASB) that was treating slaughterhouse wastewater. The UASB reactor was operated continuously under mesophilic conditions to evaluate its performance with respect to the removal of organics and, at the same time, monitor biogas production. Organic loading rate (OLR) was varied while keeping the hydraulic retention time (HRT) constant. Chemical oxygen demand (COD) removal efficiency higher than 75% was achieved at an OLR of 9 kg.COD.m-3.d-1, with a HRT of 12 h. Bulking sludge problems were not observed during the reactor operation period. Stability of the treatment process was achieved by the natural buffering of the system due to the produced alkalinity and also due to the characteristics of the wastewaters which was found to be rich in proteins and fatty acids.
  • Thumbnail Image
    Item
    Response surface optimization of oil refinery wastewater treatment process
    (GRAWW, 2019-03) Rathilal, Sudesh; Tetteh, Emmanuel Kweinor; Assis, Shan
    In this paper, a laboratory dissolved air flotation (DAF) process was employed for the removal of chemical oxidation demand (COD), soap oil and grease (SOG), total suspended solids (TSS) and turbidity from oil refinery wastewater (ORW) using polyferric sulfate. The optimization was carried out by response surface methodology Box-Behnken design to evaluate the interactive effects of three main independent process parameters (pH, coagulant dosage and flotation time) on the removal of the COD, SOG, TSS, and turbidity. The quadratic model fitted very well with the experimental data at regression coefficients (R2) of values of 0.9986; 0.9992; 0.9847; 0.9858 for COD, SOG, TSS, and turbidity respectively. Under the optimum conditions of coagulant dose of 48 mgL-1, pH (5) and flotation time (17 min), the maximum removal of COD, SOG, TSS, and turbidity were 86%, 92%, 84% and 85% respectively were obtained. The removal efficiencies showed a high significance of the model correlations at 95% confidence level. This demonstrated that the addition of the polymeric sulfate can enhance the treatability performance of the ORW.
  • Thumbnail Image
    Item
    Fouling and cleaning in osmotically driven membranes
    (InTechOpen, 2018-03-06) Chollom, Martha Noro; Rathilal, Sudesh
    Fouling is a phenomenon that occurs in all membrane processes. It is a complex problem, which limits the full operation of this technology. Fouling in pressure-driven membranes (PDMs) has been studied extensively, and the occurrence is well understood in that methods of mitigation have been proposed; however, limitations still occur for their full implementation. The use of osmotically driven membranes (ODMs) for water treatment is an emerging technology, which has shown some advantages such as low hydraulic pressure operation, high solute rejection and high recovery over PDMs. However, like in PDMs, fouling still presents a challenge. This chapter is aimed at evaluating the impact of fouling on the ODM performance, exploring the factors and mechanisms governing the fouling behaviour, developing approaches for mitigating fouling, elucidating the effect of membrane fouling and providing mitigation strategies as well as the causes of fouling in ODMs.
  • Thumbnail Image
    Item
    Treatment of water and wastewater for reuse and energy generation-emerging technologies
    (IntechOpen, 2019-04-25) Tetteh, Emmanuel Kweinor; Rathilal, Sudesh; Chetty, Maggie; Armah, Edward Kwaku; Asante-Sackey, Dennis
    Fresh water quality and supply, particularly for domestic and industrial purposes, are deteriorating with contamination threats on water resources. Multiple technologies in the conventional wastewater treatment (WWT) settings have been adopted to purify water to a desirable quality. However, the design and selection of a suitable cost-effective treatment scheme for a catchment area are essential and have many considerations including land availability, energy, effluent quality and operational simplicity. Three emerging technologies are discussed, including anaerobic digestion, advanced oxidation processes (AOPs) and membrane technology, which holds great promise to provide integrational alternatives for manifold WWT process and distribution systems to mitigate contaminants and meet acceptable limitations. The main applications, basic principles, merits and demerits of the aforementioned technologies are addressed in relation to their current limitations and future research needs in terms of renewable energy. Hence, the advancement in manufacturing industry along with WWT blueprints will enhance the application of these technologies for the sustainable management and conservation of water
  • Thumbnail Image
    Item
    Application of organic coagulants in water and wastewater treatment
    (IntechOpen, 2019-04-03) Tetteh, Emmanuel Kweinor; Rathilal, Sudesh
    Coagulation is an essential mechanism that occurs in most conventional water and wastewater treatment plants. This occurs in a physical purification unit involving transport processes and the addition of coagulants for chemical reactions, charge neutralization, and formation of smaller flocs to agglomerate into larger flocs. This enhances the effective removal of recalcitrant contaminants by downstream processes. However, poor treatment of wastewater might have a high negative impact on biodiversity and the environment in general. This chapter seeks to address the limitation of employing inorganic coagulants by evaluating the efficiency of organic coagulants and exploring the factors and mechanism governing coagulation in a physiochemical treatment process of water and wastewater resources. The effect of pH, coagulant type and dosage to ease the high sludge production and discharge of residual metals into the downstream waters is addressed. The emerging of organic coagulants and technology to mitigate the performance and recovery of mineral coagulants from wastewater treatment residual is been proposed.
  • Item
    Treatment of industrial mineral oil wastewater – effects of coagulant type and dosage
    (IWA Publishing, 2017) Tetteh, E. Kweinor; Rathilal, Sudesh; Robinson, Kate
    The use of coagulants is essential in the diverse disciplines of conventional water and wastewater treatment. This work aimed to select an economic and effective coagulant, to minimize the cost of treatment and the oil droplet content of the water, thus enhancing the efficiency of a local South African oil refinery effluent plant recovering water and oil for reuse by treating the industrial mineral oil wastewater. A standard dissolved air flotation jar test preceded evaluation of four coagulants, viz. aluminum sulfate (Alum), aluminum chloride, ferric sulfate and ferric chloride. Chemical oxygen demand, soap oil and grease, total suspended solids and turbidity were determined as water quality parameters to check coagulant efficiency. Removal of over 70% was achieved for each parameter. The results obtained at pH 5 and coagulant dose of 50 mg/L showed that alum was the best pretreatment coagulant for destabilizing and minimizing oil droplets in water, due to its trivalent cationic nature. It was also economically viable.
  • Thumbnail Image
    Item
    Investigation of BTEX compounds adsorption onto polystyrenic resin
    (Institution of Chemical Engineers, 2017) Makhathini, Thobeka Pearl; Rathilal, Sudesh
    In this study, the adsorptive capacity of polystyrenic resin was evaluated for the removal of benzene, toluene, ethylbenzene and isomers of xylene (BTEX) from an aqueous solution. Batch studies were performed to evaluate the effects of various experimental parameters such as mixing strength, contact time, internal diffusion, adsorbates and initial concentration on the removal of the BTEX compounds. The equilibrium isotherms for the adsorption of the adsorbates on the PAD 910 polystyrenic resin were analyzed by the Langmuir and linearized Dubinin–Radushkevich models at pH of 5.86. The Langmuir model fitted the data adequately; is concluded that the latter is the most practical model in representing the adsorption of aromatic compounds. The Langmuir model indicated that resin has the highest adsorption capacity of 79.44 mg/g. At temperature of 25 °C, resin was found to adsorb 98% of benzene, 88% of toluene, 59% of ethylbenzene, 84% m-;p-xylene and 90% o-xylene at an initial concentration of 14.47 mg/l. The pseudo-second order rate model fitted better to the adsorption kinetics. The thermodynamic analysis resulted in a negative equilibrium enthalpy change suggesting an exothermic process.