Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Quantitative assessment of human health risks from chemical pollution in the uMsunduzi River, South Africa
    (Springer, 2023-10-24) Ngubane, Zesizwe; Dzwairo, Bloodless; Sokolova, Ekaterina; Moodley, Brenda; Stenstrom, Thor Axel
    A quantitative chemical risk assessment was performed using published data as well as data from the official monitoring programme for the uMsunduzi River in KwaZulu-Natal, South Africa. The chemicals assessed were organochlorinated pes- ticides (OCPs), pharmaceuticals and personal care products (PPCPs), heavy metals, and nitrates and phosphates. The water from uMsunduzi River is used locally without treatment. Consequently, the exposure routes investigated were via ingestion during domestic drinking and incidental ingestion during recreational activities, which were swimming and non-competitive canoeing, for both adults and children. For the individual chemicals, non-carcinogenic risks using the hazard quotient (HQ) and carcinogenic risks using the cancer risk (CR) were quantified. It was found that the exposed population is likely to experience non-carcinogenic effects from pesticides and phosphates, but not from PPCPs, heavy metals and nitrates. This study also found that the carcinogenic risks for OCPs were higher than the tolerable limit of 10-5, while for lead the risk was below the tolerable limit. Some of the activities that potentially contribute to chemicals onto the uMsunduzi River are sub- sistence farming, small plantations, illegal dumping, industries, and broken sewers. The findings of this study may act as the technical foundation for the introduction of pollution reduction measures within the catchment, including public education
  • Thumbnail Image
    Item
    Water quality modelling and quantitative microbial risk assessment for uMsunduzi River in South Africa
    (IWA Publishing, 2022-04) Ngubane, Zesizwe; Bergion, Viktor; Dzwairo, Bloodless; Troell, Karin; Amoah, Isaac Dennis; Stenstrom, Thor Axel; Sokolova, Ekaterina
    South African rivers generally receive waste from inadequate wastewater infrastructure, mines, and farming activities, among others. The uMsunduzi River in KwaZulu-Natal, South Africa, is among these recipients with recorded poor to very poor water quality. To identify parts of the uMsunduzi River that are polluted by Cryptosporidium and Escherichia coli (E. coli), this study mapped out pollutants emanating from point and non-point sources using the Soil and Water Assessment Tool (SWAT). Streamflow calibration in the upper and lower reaches of the catchment showed good performance with R2 of 0.64 and 0.58, respectively. SWAT water quality output data were combined with a Quantitative Microbial Risk Assessment (QMRA) to understand the microbial health implications for people using river water for drinking, recreational swimming, and non-competitive canoeing. QMRA results for Cryptosporidium and pathogenic E. coli showed that the probability of infection for most users exceeds the acceptable level for drinking and recreation as outlined in the South African water quality guidelines, and by the World Health Organization (WHO). The results of this study can be used as a baseline to assess the economic and health implications of different management plans, resulting in better-informed, cost-effective, and impactful decision-making.