Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Optimal design of laminated composite and nanocomposite structures using evolutionary optimization techniques : a survey
    (2024-09-05) Moyo, Ranaganai T.; Tabakov, Pavel Yaroslavovich
    The optimal design of laminated composite and nanocomposite (LCNC) structures stands at the forefront of materials engineering, offering the potential to revolutionize the development of advanced materials with superior mechanical, thermal, and electrical properties. By tailoring LCNC structures to meet specific performance requirements, optimizing material usage, and exploring innovative design approaches, engineers can create lighter, more efficient, and environmentally friendly structures that excel in diverse applications. Many industries such as automotive, aerospace, and construction are already using composite and nanocomposite materials to develop high-strength and lightweight structures. Thus, this survey delves into evolutionary optimization techniques as powerful tools for achieving optimal configurations in LCNC structures, highlighting the importance of selecting the appropriate technique for a given optimization problem. A strict selection method was employed to come up with this review paper, and only reputable literary sources were used. The research articles used in this survey were searched from top research databases such as ScienceDirect, IEEE Xplore, Scopus, and Google Scholar. The articles published in the period, 2015 to 2024 were considered. Common design optimization problems such as buckling load, vibration, and weight and cost minimization were covered.
  • Thumbnail Image
    Item
    The impact of mild steel, stainless steel, and high-density polyethylene on the foaming ability and foam stability of aqueous film forming foam in aviation
    (Journal of Aeronautical Materials, 2024-05-01) Khanyi, Nhlanhla F.; Tabakov, Pavel Yaroslavovich; Inambao, Freddie L.
    Aqueous Film Forming Foam (AFFF) has become a critical component within the aviation industry. However, relatively few reports address the causes of the poor performance of AFFF during fire conditions due to the rarity of air crashes. Herein, the impact of mild steel, stainless steel, and high-density polyethylene on the foaming ability and foam stability of AFFF was experimentally investigated. The functional groups, particle shape, size, size distribution, and elementary analysis were conducted using the Fourier transform infrared spectroscopy, transmission electron microscopy, dynamic light scattering, and inductively coupled plasma atomic emission spectroscopy. The results showed that all three materials affect the foam ability and foam stability of AFFF in some manner, with mild steel having the most severe impact. The recommendations to use cross-linked polyethylene and fiberglass materials for better storing AFFF concentrate were thoroughly discussed.