Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    An adaptive neuro-fuzzy inference scheme for defect detection and classification of solar Pv cells
    (Academy Publishing Center, 2024-09-12) Moyo, Ranganai Tawanda; Dewa, Mendon; Romero, Héctor Felipe Mateo; Gómez, Victor Alonso; Aragonés, Jose Ignacio Morales; Hernández-Callejo, Luis
    This research paper presents an innovative approach for defect detection and classification of solar photovoltaic (PV) cells using the adaptive neuro-fuzzy inference system (ANFIS) technique. As solar energy continues to be a vital component of the global renewable energy mix, ensuring the reliability and efficiency of PV systems is paramount. Detecting and classifying defects in PV cells are crucial steps toward ensuring optimal performance and longevity of solar panels. Traditional defect detection and classification methods often face challenges in providing precise and adaptable solutions to this complex problem. In this study the researchers pose an ANFIS-based scheme that combines the strengths of neural networks and fuzzy logic to accurately identify and classify various types of defects in solar PV cells. The adaptive learning mechanism of ANFIS enables the model to continuously adapt to changes in operating conditions ensuring robust and reliable defect detection capabilities. The ANFIS model was developed and implemented using MATLAB and a high predicting accuracy was achieved.
  • Thumbnail Image
    Item
    The role of computational intelligence techniques in the advancements of solar photovoltaic systems for sustainable development : a review
    (Arab Academy for Science, Technology, and Maritime Transport (AASTMT), 2022) Moyo, Ranganai Tawanda; Dewa, Mendon
    The use of computational intelligence (CI) in solar photovoltaic (SPV) systems has been on the rise due to the increasing computational power, advancements in power electronics and the availability of data generation tools. CI techniques play an important role in modelling, sizing, forecasting, optimizing, analysing and predicting the performance and control of SPV systems. Thus, CI techniques have become an essential technology as the energy sector seeks to meet the rapidly increasing demand for clean, cheap, and reliable energy. In this context, this review paper aims to investigate the role of CI techniques in the advancements of SPV systems. The study includes the involvement of CI techniques for parameter identification of solar cells, PV system sizing, maximum power point tracking (MPPT), forecasting, fault detection and diagnosis, inverter control and solar tracking of SPV systems. A performance comparison between CI techniques and conventional methods is also carried out to prove the importance of CI in SPV systems. The findings confirmed the superiority of CI techniques over conventional methods for every application studied and it can be concluded that the continuous improvements and involvement of these techniques can revolutionize the SPV industry and significantly increase the adoption of solar energy.
  • Thumbnail Image
    Item
    Applications of artificial intelligence to photovoltaic systems : a review
    (MDPI AG, 2022) Mateo Romero, Héctor Felipe Mateo; González Rebollo, Miguel Ángel González; Cardeñoso-Payo, Valentín; Alonso Gómez, Victor Alonso; Redondo Plaza, Alberto Redondo; Moyo, Ranganai Tawanda; Hernández-Callejo, Luis
    This article analyzes the relationship between artificial intelligence (AI) and photovoltaic (PV) systems. Solar energy is one of the most important renewable energies, and the investment of businesses and governments is increasing every year. AI is used to solve the most important problems found in PV systems, such as the tracking of the Max Power Point of the PV modules, the forecasting of the energy produced by the PV system, the estimation of the parameters of the equivalent model of PV modules or the detection of faults found in PV modules or cells. AI techniques perform better than classical approaches, even though they have some limitations such as the amount of data and the high computation times needed for performing the training . Research is still being conducted in order to solve these problems and find techniques with better performance. This article analyzes the most relevant scientific works that use artificial intelligence to deal with the key PV problems by searching terms related with artificial intelligence and photovoltaic systems in the most important academic research databases. The number of publications shows that this field is of great interest to researchers. The findings also show that these kinds of algorithms really have helped to solve these issues or to improve the previous solutions in terms of efficiency or accuracy.
  • Thumbnail Image
    Item
    Comparative analysis of different computational intelligence techniques for maximum power point tracking of PV systems
    (University of Oradea, 2022-10-01) Moyo, Ranganai Tawanda; Tabakov, Pavel Y.; Moyo, Sibusiso
    The performance of a photovoltaic (PV) module can be improved by employing maximum power point tracking (MPPT) controllers. MPPT controllers are algorithms that are included in PV battery charge controllers or inverters to extract the maximum available power from PV modules for any given temperature and irradiance. Several studies report that the use of PV modules without MPPT controllers results in power losses, which ultimately results in the need to install more solar panels for the same power requirement. Numerous techniques of varying complexities have been proposed in the literature to solve the MPPT objective function. This paper presents a comparative analysis of three computational intelligence (CI) based MPPT techniques namely, the fuzzy logic (FL) based controller, artificial neural networks (ANN) based controller, adaptive neuro-fuzzy inference system (ANFIS) based controller and one conventional technique, the perturbation and observation (P&O) controller. These MPPT controllers are designed, simulated and analysed in the MATLAB/Simulink environment. The performance of the studied MPPT techniques is evaluated under steady-state weather conditions, rapidly changing weather conditions and varying load conditions. CI-based MPPT controllers are found to be more efficient than the P&O controller. Moreover, the ANFIS-based MPPT controller shows an outstanding MPPT performance for all the scenarios studied.
  • Thumbnail Image
    Item
    Artificial intelligence based solar/diesel hybrid water pumping system
    (2021-12-01) Moyo, Ranganai Tawanda; Tabakov, Pavel Y.
    Solar energy powered systems are increasingly being implemented in different areas due to the advances in solar energy technologies. Some of the major areas for solar energy applications include solar water heating, solar electric power generation, and solar water pumping. Solar water pumping has become the most adopted solar energy technology in the last decade. It has been considered as an attractive way to provide water in remote areas. A major advantage of using solar water pumps is that they are naturally matched with solar irradiation since usually water demand is high in summer when solar irradiation has its maximum values. However, solar energy powered systems are weather dependent. In most cases, a solar energy source has to be combined with another energy source to form a hybrid system to overcome the demerits of using solar alone. This thesis provides the detailed design, modelling and analysis of an Artificial Intelligence (AI) based solar/diesel hybrid water pumping system. This research aims to develop an optimization model that uses AI techniques to maximize the solar energy output and manage the energy flow within the solar/diesel hybrid water pumping. Thus, the proposed system is composed of solar photovoltaic modules, battery bank, Variable Speed Diesel Generator (VSDG), Adaptive Neuro-Fuzzy Inference System (ANFIS) based Maximum Power Point Tracking (MPPT) controllers and an Energy Management Controller (EMC). The EMC, which is based on Fuzzy Logic (FL), is responsible for managing the flow of energy throughout the hybrid system to ensure an undisturbed power supply to the water pump. The PV array, battery bank, VSDG are all sized to power a 5Hp DC water pump and the ANFIS based MPPT controllers are proposed for improving the efficiency of PV modules. The modelling of the system components is performed in the MATLAB/Simulink environment. For evaluation of the proposed system, several case scenarios were considered and simulated in the MATLAB/Simulink environment. The simulation results revealed the effectiveness of the proposed ANFIS based MPPT controllers since the controllers were able to extract maximum available power from PV modules for both steady-state and varying weather conditions. The proposed EMC demonstrated the successful management and control of the energy flow within the hybrid system with less dependency on the VSDG. The EMC was also able to regulate the charging and discharging of the battery bank.