Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    Basic mathematical modelling for polymer woven fabric performance suitable for low energy filtration systems
    (2019) Mncube, Blessing Thokozani; Rathilal, Sudesh; Pillay, Visvanathan Lingamurti
    Water is one of the most important and essential resources that people usually misuse and take for granted until it is either gone or unsuitable to be utilized for domestic, industrial or agricultural purposes. The need to explore affordable purification technologies is essential. The filtration processes are innovative technologies that can be employed in water treatment systems or water purification technologies. However, the filtration technologies have one prime limitation factor of which is fouling and biofilm formed on the membrane surface sometimes internal. Recent advancements in polymer science and textiles have led to developing fabric material that can be used as membranes suitable for emerging economies. For years’ people do use fabric to purify river water especially women from rural areas. Yet non-woven materials are used as a membrane by industries as compared to woven fabrics. However, most non-woven fabrics are easily damaged when cleaned with a polymer brush and require periodical replacement. The tapeline and filter manufacture use a woven fabric as a backer before casting or putting a filter on the weave fabric. These prove the fact that any woven fabric can be modified for optimal use. On the other hand, most Engineers and scientists have not given much attention to woven fabrics as a result, woven fabrics are not employed as membranes. Some scientists and engineers believe that woven fabrics are not suitable for treating water for domestic use. Some believe that some woven fabrics can be used as membranes provided they are capable to remove unwanted materials like bacteria and pathogen. The aim of this study is to create a full understanding of the factors that affect the fabrics when used as membranes, especially when the polymer woven fabrics are used as filters to treat water and wastewater. It is essentially important to develop standardized procedures or models that accurately describe the textile woven fabrics behaviour when used as filters. The standardized models or procedures will assist engineers and scientists when developing filtration systems using woven fabrics. The first objective was to evaluate and compare the fabric types that can be used as filters or membranes in water and wastewater treatment processes. The second objective was to identify the applications for woven fabric membranes and evaluate the factors that play a critical role during the filtration process and relationship between those factors. The experimental investigations conducted were to evaluate the (1) main objectives; (2) effect of membrane orientation; (3) effect of feed quality on membrane performance; (4) effect on stable flux quality and quantity of the selected fabrics; (5) effect of fabric type on filtration or microfiltration processes; (6) effect of membrane fouling on membrane performance; (7) develop the basic model suitable in identifying the right fabric for any filtration system operating at low energy. The experimental investigations conducted were to evaluate the selected woven fabrics that were manufactured in South Africa, easy to clean with a polymer brush. Those woven fabrics were tested using South African river water and wastewater from treatment plants. When evaluating different feed solutions, bio-fouling was considered to be the major limiting factor of woven fabrics, but the feed with a lot of bio impurities can be modified for optimization processes. Laboratory apparatus and field apparatus was developed to analyze and evaluate the effect and behaviour of fabrics performance, and cake formed on the fabrics. The result clearly states that a solution or wastewater with a lot of biological organisms produce lower flux and also produces a lower critical/stable flux when compared with the solution with more incompressible solids or impurities. The result clearly shows that all selected fabrics can be used as filters however; the polyester fabric was the only fabric that can be used for microfiltration processes suitable to clean water for domestic use. This polyester fabric removes 99.995% of impurities from the polluted waters. The Permeate water quality coming from this polyester fabric was less than 1NTU, before and after stable flux. Other fabrics can be used as filters but not for microfiltration. These three fabrics are not capable of removing micro-impurities (less than 20 micrometres). The basic mathematical modelling Equation developed, proved that the membrane pore size, driving force, impurities size in polluted water, impurities nature and impurities concentration play major roles in the filtration process especially in stable flux formation. The simple Equation F = Ae−Bt + C was discovered to be suitable to evaluate the fabric performance, where C is the constant flux value, A is the maximum flux value and B is the part of the critical area or rate change. The Equation can be applied to most fabrics that are used as filters. Testing the maximum flux value was critical and achievable when using pure and clean water especially the distilled water. The results show that most solutions with high compressible impurities will take less time to reach a critical or stable flux. The solution or effluent or river water with more bio impurities and more bacteria will have less flux when compared with a solution with more incompressible impurities. Most polymer woven fabrics do not require any sophisticated technologies or additional chemicals to clean. It can be easily brushed with a polymer brush. Brushing the surface of the fabric with balanced tensile strengths in both warp and weft yarns will not rearrange, damage, or affect the pore size. Only sharp objects can damage the polymer fabrics. The knowledge of this report will assist in optimising the filtration system operation at low energy when using woven polymer fabrics as membranes for filtration. The basic mathematical model can be useful to engineers and scientists willing to use woven fabrics as membranes. Hence, mathematical modelling is one of the important tools of engineering optimization and design. This study focuses on the low energy (gravity-driven) systems that treat water and wastewater like Household Point of Use (POU) systems. Other POU systems were tested and compared to POU systems that are made of the Polymer woven fabric. Based on results, it can be concluded that POU's that uses polyester membranes (PWF-POU) are good prospects for area without sophisticated water or wastewater treatment systems since it removes almost all bacteria and impurities. Polyester woven fabrics can be used as a microfiltration membrane not only to process water or wastewater but also to process chemicals, oils, etc. The other selected fabrics that were made of polypropylene filaments need to be modification in order to operate at optimum when cleaning water for domestic and tertiary use. When modifying these polypropylene fabrics, the quality do improved.
  • Thumbnail Image
    Item
    An investigation into the factors affecting precoat performance in woven-fibre microfiltration
    (2002) Vallabh, Shadana; Pillay, Lingam
    Crossflow microfiltration (CFMF) using a fabric support has been successfully used to treat a range of problematic waters. Experimental evidence indicates that the formation of a dynamic membrane or precoat on a woven-fibre microfilter can significantly increase the performance of the filter, that is, the production rate and rejection. The use of precoats in filtration applications is based on the precoat's unique microstructure that is able to trap sub-micron particles while maintaining a permeable filter cake. However, to date the precoating step has been more of an art than a science. Very little knowledge exists on the best type of precoat to use, or the the optimal velocity, pressure and concentration to form a stable precoat. Further, although various models have been proposed for CFMF, their still exists a lack of knowledge of the mechanisms by which precoats improve performance.
  • Thumbnail Image
    Item
    Evaluation of a small scale water disinfection system using WFMF
    (2015-08) Alfa, Dorcas Enaji; Rathilal, Sudesh; Pillay, Visvanathan Lingamurti
    Provision of microbiologically safe drinking water for people living in the rural areas of developing countries remains a major challenge to date. One of the reasons is due to the inability to access potable water mainly because of poor existing water purification systems. Current measures have been put in place to address the challenges of rural water supply. Development of appropriate technologies such as decentralized water treatment supply in the form of point of use (POU) systems are been considered. In lieu of the above, an appropriate POU system known as the Remote Rural Water Treatment System (RRWTS) was developed at Durban University of Technology (DUT). The RRWTS is polyester based locally sourced Woven Fabric Microfiltration (WFMF) membrane system. The unit is made up of flat sheet modules that are assembled into a pack. It is a robust gravity driven system with the ability to remove suspended solids and colloids in the form of turbidity. The system has high flux of 35 ± 7 LMH and turbidity below 1 NTU, it has the ability to remove pathogens well above 95%. However, this does not comply with WHO and SANS drinking water standards of zero E. coli count/100 ml of treated water. In order to bring the water treated by RRWTS to a satisfactory level for drinking, it is then necessary to add a separate disinfection step like chlorination step to further remove the remaining microbial contaminants. Thus the main objective of the study was to evaluate the disinfection efficacy of two disinfectants namely waterguard and bromochlor tablet disinfectants and investigate their integration with the WFMF membrane. The study was categorised into three parts. The first part is the addition of disinfectants to unfiltered river water sources for the determination of residual chlorine and the most optimum dose that will yield effective disinfection and also evaluate the extent of E. coli removal by the disinfectants. The second stage was the filtration of four river water sources using the woven fibre membrane (WFM) to determine the efficiency of WFMF. Finally the effect of disinfection kinetics on disinfection was achieved by agitating the water after disinfection and allowing it to stand at different contact times. Performance of the RRWTS was determined by the amount of E. coli and turbidity removed during filtration using WFMF and by chemical disinfectants after filtration. The results on residual chlorine for different water sources showed that feed quality and disinfectant dose determines the quantity of residual chlorine on all the water sources. The effectiveness of chemical disinfectants in E. coli removal is affected by the quality of water to be disinfected. The study showed that turbidity plays a major role on disinfection by increasing chlorine demand on water sources with high turbidity levels. The WFMF demonstrated excellent filtration performance by producing permeates with turbidity less than 1 NTU for feed turbidities ranging from 10 to 200 NTU. The E. coli removal efficiency by WFMF was very high on all the water sources treated. There was 95-99.8% E. coli removal on raw feeds with influent E. coli ranging between 500 and 44500 CFU/100 ml. It was seen that major benefits are derived from integrating the WFMF (RRWTS) with chemical disinfection. The benefits includes; better disinfection that meets drinking water set guidelines of zero E. coli and improved quality of water. The need for disinfection kinetics in order to obtain superior disinfection was eliminated. The possibility of disinfection-by-product formation was reduced as smaller quantities of chemical disinfectants were required for complete disinfection on the filtered water.
  • Thumbnail Image
    Item
    Optimization of the woven fibre-immersed membrane bioreactor (WF-IMBR)
    (2017) Shitemi, Kenneth Khamati; Rathilal, Sudesh; Pillay, Visvanathan Lingamurti
    In this research, the woven fibre microfiltration (WFMF) fabric which is produced locally in South Africa is used as a membrane material. It is cheaper in price in comparison with the current commercial membrane materials that are in use. The WFMF is also more robust when compared with the commercial membrane materials thus is able to withstand harsh working conditions. From previous studies on the WFMF, it has been shown that it can be used as a membrane material without any compromise to permeate quality. This research seeks to optimize the working conditions of this membrane material (WFMF) with an aim of achieving lower running costs and better anti fouling strategies in comparison to the commercial MBRs. The objectives and aims of this research was to come up with a MBR system whose running cost is lower than that for the commercial systems, which can be adapted for use in any environment, especially in the hardship regions where its robustness would be an added advantage. The performance of the WFMF submerged MBR was also optimised including antifouling operating regimes. This study was done in a pilot plant that was set up at Veolia wastewater treatment plant, Durban Metro Southern Works. The feed water for the pilot plant was pumped from the return activated sludge mixing chamber by means of a submersible pump. The MLSS concentration of the feed water was about 12 g/l. The various investigations that were conducted in the course of this research included the effect of spacing between membrane modules, relaxation steps and frequencies, evaluation of aeration rates and evaluation of coarse vs. fine bubbles which were all aimed at optimizing the performance of the immersed WFMF MBR. The permeate was checked for turbidity and COD levels to ensure that they were within the accepted water standards. From the experiments it is shown that the critical flux increased with an increase in aeration rate which is in concurrence with the literature and a starting flux of 30 LMH was chosen for the running of the pilot plant for the various experimental runs to be carried out. For the pipe diffuser height effect experimental run, the best results were achieved at a height of 5 cm below the membrane modules and the use of a pipe diffuser gave better results than the use of a disc diffuser. For the membrane module spacing effect the best results were obtained at the smallest possible width i.e. 3.5 mm. The best relaxation step sequence was found to be 9 mins on and 1 min off. COD, turbidity and DO was continuously determined during the course of the experimentation. Further studies should be done on use of the disc diffuser with increased surface area of aeration holes and also hole sizes of smaller diameters to check on its effectiveness as a means of reducing fouling on the membrane surface.
  • Thumbnail Image
    Item
    Evaluation of micro-scaled TiO b2 s on degradation and recovery of mTiO b2 s from treated drinking water
    (2016) Dlamini, Chazekile Precious; Musonge, Paul
    River water is a life supporting watercourse to most communities in rural areas. It is used for both human and animal consumption, and is well becoming a collection channel for defecation and urination due to shortage or lack of access to running water and sanitation facilities. This has resulted to the contamination of water sources, which poses a great risk to human health. This has motivated researchers to study simple but yet robust systems to produce safe drinking water. Photocatalysis is one of such emerging disinfection technologies. Titanium dioxide (TiO2) which is one of the basic materials used for paint manufacturing has emerged as an excellent photocatalyst material for water purification. TiO2 was selected in this study because it is locally available with a potential to open a new market in water purification for the manufacturers. The setback in previous studies is the recovery of nano-scaled TiO2 (nTiO2) after purification when used as a suspension in treated water. Thus this study evaluates the performance of four grades of micro-scaled TiO2 (mTiO2) on the degradation of organic matters, Escherichia coli (E. coli) and total coliform in river water and to investigate the percentage recovery of the mTiO2 using a locally manufactured Polyester Woven Fabric Microfiltration (PWFMF) membrane. The PWFMF though uncharacterized has been used in a number of studies for treating domestic and industrial waste waters. The best-performing grade was used to optimize the degradation efficiency of E. coli in river water using the Design of Experiments (DOE) methodology. Grade 2 of the mTiO2, which is hydrated titanium dioxide with additions (ahTiO2) of particle size range of 0.2 – 53 µm at a concentration of 2.5 g/l displayed an advantageous photocatalytic activity. The results show that 80 % of the organics were removed in 3 hours and increased to 93% after 6 hours. Two particle size ranges of 0.2 – 53 µm and 54 – 75 µm at a concentration of 5 g/l degraded organic matters to 90 % and 77 % in 3 hours respectively. The particle size range of 0.2 – 53 µm at a concentration of 5 g/l was then filtered using a PWFMF and turbidities went below 1 NTU after 20 minutes from feed turbidity of 470 NTU for all three trials. The average percentage recovery in 2 hours was 98.91 %. The four grades of mTiO2 were analyzed for E. coli and total coliform for 4 hours at concentrations of 2, 5 and 7 g/l. Grade 2 achieved the E. coli specification of 0 count/ 100 mL at 5 g/l in 2 hours and at 7 g/l in 0.5 hours. Grade 4 E. coli specification was achieved with 7g/l in 4 hours. Grades 2 and 4 performed better since they both achieved the E. coli and total coliform specifications. Grade 2 was the best performing grade and was considered for statistical studies. Grade 2 was then used on a comparative study between the Central Composite Design (CCD) and Box-Behnken Design (BBD), which are two of the major Response Surface Methodologies (RSM). The CCD compared to BBD provides high quality predictions over the entire design space. The CCD obtained optimum results for concentration of mTiO2 (X1), temperature (X2), initial pH (X3) and aeration (X4) which were 6.94 g/l, 28.75 OC, pH = 6.04, and 13.35 L/min for the maximum degradation efficiency of 99.85 % which showed comparable optimum results to the BBD that were 6.45 g/l, 28.28 OC, pH = 6.02 and 12.21 L/min for the maximum degradation efficiency of 99.80%. These theoretical model results were validated by practical experiments that produced the maximum degradation efficiency for CCD and BBD of 99.67 and 99.26 % respectively. Grade 2 of the mTiO2 can be used as a photocatalyst for river water purification due to its strong ability for the removal of E. coli. The additions used in grades 2 and 4 during production improved the photocatalytic activity. The PWFMF membrane showed a great performance of above 98 % particle recovery of mTiO2 from treated water, although there was an indication that the smallest particles were passing through the membrane. The RSM results gave approximately the same optimum results that were well within the limits, which were experimentally validated and showed that the models were sustainable. It is recommended that the effect of additions be studied on the structures or the charge stability of the two grades.
  • Thumbnail Image
    Item
    Performance characteristics of bio-ultrafiltration on local surface waters
    (2014) Thoola, Maipato Immaculate; Pillay, Visvanathan Lingamurti; Rathilal, Sudesh
    Access to safe drinking water supply is still a major problem especially in remote rural areas of developing countries. These communities rely solely on untreated surface and ground waters for survival due to the lack of financial resources to provide access to piped water. The consumption of this water in turn makes them easily susceptible to water related diseases. Hence, there is a need for an interim solution while the government is still sourcing funds for the distribution of water to these communities. Membrane filtration is a promising technology for the treatment of surface water as it does not alter the taste or smell of the end product. The main limitation for the implementation of membrane technology in rural areas is still energy demand, fouling and the skills required for membrane cleaning. Biological ultrafiltration is an emerging technology that produces water of high quality in terms of turbidity, organics and bacteria removal. The technology has been evaluated using a gravity driven dead-end mode on European waters and it offered acceptable stabilisation of fluxes for extended periods without any chemical cleaning or backwashing. This is a promising technology which can be implemented to act as an interim solution for the treatment of surface water in remote rural areas prior to consumption. This study concerns the evaluation of a biological ultrafiltration membrane system on local three South African rivers, namely, Tugela River, Umbilo River and Umgeni River. A laboratory systems comprising of a feed tank and six membrane modules connected in parallel was set up to assess the performance of a bio-UF membrane on a range of surface waters. The performance was assessed on the system’s ability to produce stable fluxes from the three rivers, the system ability to produce water with acceptable quality in terms of SANS 241:2011 for turbidity, TOC, total coliforms and E-coli. The membranes were initial cleaned and the flux rates for ultra-pure water were determined for each membrane prior to being exposed to raw water. Raw water samples were collected from three rivers with varying turbidity, total coliforms and organics. The concentrations of these contaminants were tested prior to running the raw water through the system. Thereafter, permeate was collected with time and its quality was evaluated in terms of turbidity, TOC and coliforms. The impacts of algae on flux stabilisation were evaluated by allowing the bio-UF system to run for a minimum of 3 months with and without algae growth. The system was found to be able to produce water that is compliant with the SANS 241:2011 standard in terms of turbidity, total coliforms, E-coli and TOC concentration. The system was also found to be unable to produce stable fluxes for all three rivers. The observed responses were noted to be similar to normal dead-end response, however, a slow declining flux rates was observed for Umgeni River. The presence of algae during the operation was a bio-UF membrane system was noted to further decrease the rate of flux decline. There appears to be a correlation between the raw water quality and the rate of flux decline. A further investigation was carried out aimed at assessing the relationship between the concentration of bacterial counts, TOC and turbidity. From the obtained results, it was noted that feed water with low turbidity (≤ 5 NTU), high bacterial count (≥30 000) and high total organic carbon (≥70 mg/L) is able to reduce the rate of flux decline. Hence, it can be concluded that a dead-end gravity driven Bio-UF membrane system can be used for the treatment of surface water in remote where the most main contaminants are from natural organic matter, micro-organisms and turbidity. Furthermore, it is able to produce slower declining flux rates which will increase the filter run time. It is recommended that the impacts of algae, type of bacteria and organics that enable slow decline in flux rates during the operation of Bio-UF should be investigated in order to identify means of enhancing the flux rates. Microfiltration membranes are available on the local markets hence it is also recommended that the performance of Bio-UF should be evaluated in comparison to Bio-MF.
  • Thumbnail Image
    Item
    Development and evaluation of woven fabric immersed membrane bioreactor for treatment of domestic waste water for re-use
    (2014) Cele, Mxolisi Norman; Rathilal, Sudesh; Pillay, Visvanathan Lingamurti
    Increased public concern over health and the environment, the need to expand existing wastewater treatment plants due to population increase, and increasingly stringent discharge requirements, have created a need for new innovative technologies that can generate high quality effluent at affordable cost for primary and secondary re-use. The membrane biological reactor (MBR) process is one of the innovative technologies that warrant consideration as a treatment alternative where high quality effluent and/or footprint limitations are a prime consideration. MBR processes have been applied for the treatment of industrial effluent for over ten years (Harrhoff, 1990). In this process, ultrafiltration or microfiltration membranes separate the treated water from the mixed liquor, replacing the secondary settling tanks of the conventional activated sludge process. Historically, energy costs associated with pumping the treated water through the membranes have limited widespread application for the treatment of high volumes of municipal wastewater. However, recent advancements and developments in membrane technology have led to reduced process energy costs and induced wider application for municipal wastewater treatment (Stephenson et al., 2000). This report describes a small and pilot scale demonstration study conducted to test a woven fabric microfiltration immersed membrane bioreactor (WFM-IMBR) process for use in domestic wastewater treatment. The study was conducted at Durban Metro Southern Wastewater Treatment Works, Veolia Plant, South Africa. The main objective of this project was to develop and evaluate the performance of an aerobic woven fabric microfiltration immersed membrane bioreactor (WFM-IMBR) for small scale domestic wastewater treatment. The experiments were oriented towards three sub objectives: to develop the membrane pack for immersed membrane bioreactor based on WF microfilters; to evaluate the hydrodynamics of WF membrane pack for bioreactor applications; and to evaluate the long-term performance and stability of WFM-IMBR in domestic waste water treatment. The literature was reviewed on membrane pack design for established commercial IMBR. The data collected from literature was then screened and used to design the WF membrane pack. Critical flux was used as the instrument to measure the WF membrane pack hydrodynamics. Long-term operation of the WFM-IMBR was in two folds: evaluating the performance and long term stability of WFM-IMBR. The membrane pack of 20 flat sheet rectangular modules (0.56 m by 0.355 m) was developed with the gap of 5 mm between the modules. The effects of parameters such as mixed liquor suspended solids or aeration on critical flux were examined. It was observed that the critical flux decreased with the increase of sludge concentration and it could be enhanced by improving the aeration intensity as expected and in agreement with the literature. Hence the operating point for long term subcritical operation was selected to be at a critical flux of 30 LMH and 7.5 L/min/module of aeration. Prior to the long term subcritical flux of WFM-IMBR, the operating point was chosen based on the hydrodynamic study of the WF membrane pack. The pilot scale WFM-IMBR demonstrated over a period of 30 days that it can operate for a prolonged period without a need for cleaning. Under subcritical operation, it was observed that there was no rise in TMP over the entire period of experimentation. Theoretically this was expected but it was never investigated before. Good permeate quality was achieved with 95% COD removal and 100% MLSS removal. The permeate turbidity was found to be less than 1 NTU and it decreased with an increase in time and eventually stabilized over a prolonged time. Woven fibre membranes have demonstrated great potential in wastewater treatment resulting in excellent COD and MLSS removal; low permeate turbidity and long term stability operation. From the literature surveyed, this is the first study which investigated the use of WF membranes in IMBRs. The study found that the small scale WFM-IMBR unit can be employed in fifty equivalence person and generate effluent that is free of suspended solids, having high levels of solid rejection and has acceptable discharge COD for recycle. Future work should be conducted on energy reduction strategies that can be implemented in WFM-IMBR for wastewater treatment since high energy requirements have been reported by commercial IMBRs.
  • Thumbnail Image
    Item
    Development of a small scale water treatment system for fluoride removal for rural areas
    (2015) Dlamini, Thulani; Rathilal, Sudesh; Pillay, Visvanathan Lingamurti
    Several areas in the world such as the United States of America, Sri Lanka, China, Argentina, Canada, Tanzania, Kenya, South Africa and many others have a problem of high fluoride content in drinking water. Generally fluoride levels above 1.5 ppm in water may result in dental and skeletal fluorosis in humans depending on quantity consumed (Fan et al., 2003; Meenakshi, 2004). Remote rural areas where there are no water treatment facilities are more vulnerable to this problem. Adsorbents such as activated alumina and FR-10 resin seem to have a potential for successful application in rural areas. These methods however require pre-treatment if the feed has high turbidity. A membrane based system called woven fabric microfiltration gravity filter (WFMFGF) developed by Durban University of Technology proved to be suitable for turbidity removal. The main objective of this research was to develop a small water treatment system for fluoride removal. The small water treatment system developed in this study consists of WFMFGF for pre-treatment and an adsorption column. The WFMFGF is made up of a 40 L container packed with 15 immersed flat sheet membrane elements. The operation of the WFMFGF is in batch mode, driven by varying static head. The static head variation results in flow rate variation through the system. This in turn result in variation of contact time, velocity as well as pressure drop in the fluoride removal unit. Specific objectives of the study were: (1) to establish the maximum and minimum flow rates through the WFMFGF system, the total run time before cleaning is required and the best cleaning method for this particular membrane system. (2) to evaluate and compare the performance of activated alumina and FR-10 resin on varying contact time, velocity and pressure drop on the fluoride removal unit. The adsorbents were also compared on adsorption capacity, cost and ease of operation. The minimum and maximum flow rates through the WFMFGF were found to be 5 l/hr and 100 l/hr respectively. It was found that the system can be run for more than a month before requiring cleaning. The suitable cleaning method was found to be soaking the membranes in 0.0225 percent sodium hypochlorite solution overnight and brushing them using a plastic brush. The comparison of the performance of FR-10 resin to activated alumina found that the adsorbents gave equal performance based on the given criteria. FR-10 resin had higher adsorption capacity, gave good quality treated water even with shorter contact time and operated at wider velocity range. Activated alumina on the other hand had an advantage of lower costs, lower pressure drop and ease of use. According to Pontius (1990), the performance of activated alumina can be improved by intermittent operation. Point of use (POU) systems are generally operated intermittently. This improves the fluoride removal efficiency of activated alumina giving it more advantage over FR-10 resin. Based on this activated alumina was selected as the best adsorbent for the system. After the adsorbent was selected, the adsorption column was designed. The column operation regime was 3.5 minutes minimum contact time and 1.17 to 7.8 m/hr velocity range. The activated alumina adsorption capacity was 1.53mg/g. The column had an inside diameter of 70 mm. It was packed with activated alumina to a bed height of 400 mm. The column inlet and outlet pipes were made of PVC with a standard pipe size of 20 mm outside diameter. A valve at the column inlet pipe allowed water to flow through the system.