Faculty of Engineering and Built Environment
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9
Browse
2 results
Search Results
Item Infrastructure delivery management challenges in KwaZulu-Natal : a review of the operations and maintenance module(Seybold Publications, 2024-10-22) Hadebe, Weziwe; Armoed, Zakheeya; Mewomo, ModupeGlobally, governments have prioritized infrastructural policy and infrastructure development as the key to economic development. Efforts to accelerate effective infrastructural delivery in South Africa gave rise to the development of a government-wide tool called the Infrastructural Delivery Management System (IDMS). This was developed as a standardized approach for the planning, budgeting, procurement, operations, maintenance, decision-making and general management of South Africa’s infrastructural development across all tiers of government. The study explores the effectiveness of implementing the Operations and Maintenance (O&M) module of the IDMS in the province of KwaZulu-Natal (KZN). Focusing on the KZN province, the study utilizes a mixed method research approach. Articles were sourced from databases which included Scopus, Web of Science, Google Scholar and Governmental platforms. Peer-reviewed studies in the English language that were published between 2010 to 2024 were identified. Key search terms were infrastructure delivery management system, challenges, operations, maintenance, and efficiency that informed the literature review of the study. The study drew a sample of 133 participants responsible for infrastructural delivery using purposive sampling. Data was analyzed using thematic and content analysis. Findings suggest within the ecosystem of infrastructural development in the KZN province, the necessary IDMS capacity and capabilities do exist. However, the impact of different institutional roles, responsibilities and concurrent functions; in coordinating and implementing the IDMS, has influenced a growing backlog in public infrastructural delivery in KZN. This can be attributed to the failures in coordination resulting in the efficiencies of the O&M module. Through the resurrection of district maintenance workshops and decisive leadership in response to poor operational and maintenance plans, the application of IDMS may prove to be successful in alleviating infrastructure backlogs across all tiers of governance.Item Design and modeling of the ANFIS-based MPPT controller for a solar photovoltaic system(ASME International, 2021-08) Moyo, Ranganai T.; Tabakov, Pavel Y.; Moyo, SibusisoAbstract Maximum power point tracking (MPPT) controllers play an important role in improving the efficiency of solar photovoltaic (SPV) modules. These controllers achieve maximum power transfer from PV modules through impedance matching between the PV modules and the load connected. Several MPPT techniques have been proposed for searching the optimal matching between the PV module and load resistance. These techniques vary in complexity, tracking speed, cost, accuracy, sensor, and hardware requirements. This paper presents the design and modeling of the adaptive neuro-fuzzy inference system (ANFIS)-based MPPT controller. The design consists of a PV module, ANFIS reference model, DC–DC boost converter, and the fuzzy logic (FL) power controller for generating the control signal for the converter. The performance of the proposed ANFIS-based MPPT controller is evaluated through simulations in the matlab/simulink environment. The simulation results demonstrated the effectiveness of the proposed technique since the controller can extract the maximum available power for both steady-state and varying weather conditions. Moreover, a comparative study between the proposed ANFIS-based MPPT controller and the commonly used, perturbation and observation (P&O) MPPT technique is presented. The simulation results reveal that the proposed ANFIS-based MPPT controller is more efficient than the P&O method since it shows a better dynamic response with few oscillations about the maximum power point (MPP). In addition, the proposed FL power controller for generating the duty cycle of the DC–DC boost converter also gave satisfying results for MPPT.