Faculty of Engineering and Built Environment
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9
Browse
2 results
Search Results
Item Alcohols conversion over transition metal based catalyts(2018) Ndebele, Mthobisi Sbonelo; Isa, Yusuf MakarfiEthanol and butanol obtainable through fermentation of lignocellulose biomass have become promising alternative feedstock for production of fuels as they are biodegradable and sustainably regenerated via the photosynthesis cycle. The properties of hydrocarbons produced through alcohol conversion closely resemble those of gasoline. Catalytic systems are reported to play a vital role during alcohol conversion to hydrocarbons. In this study ethanol and butanol were used as a feedstock for production of hydrocarbons over Fe, Zn and Ni catalyst systems supported on zeolite ZSM-5 (Zeolite Socony Mobil-5) and activated carbon (AC). X- Ray Diffraction (XRD), Scanning Electron Microscope (SEM) coupled with Energy- dispersive X-ray spectroscopy (EDS) and Brunauer, Emmet, and Teller (BET) analyses were employed for catalyst characterization. XRD patterns confirmed the success of metal doping on ZSM-5 and activated carbon supports. Major peaks at 7.96° and 23.97° corresponding to ZSM-5 crystals were observed in ZSM-5, and AC was found to be amorphous. Impregnation with metals reduced the crystallinity of ZSM-5 supported catalysts. Whereas SEM analysis showed that catalysts supported on ZSM-5 exhibited irregular shapes and catalyst supported on activated carbon exhibited disordered structures. The BET analyses confirmed that the surface areas of promoted catalysts decreased after metal doping. Evaluation of the catalysts were carried out in a ½ inch stainless steel reactor at 400 °C and atmospheric pressure with a weight hourly space velocity (WHSV) of 2.5 h-1 (g feed)/ (g catalyst). The ZSM-5 support performed better than activated carbon support. More than 90% conversion was achieved over catalysts supported on ZSM-5. Production of hydrocarbons over catalysts supported on activated carbon were as a result of the active component. Conversion of feedstock was observed to produce more benzene, toluene and xylene (BTX) compounds with an increase in butanol content. 100% conversion was achieved with pure butanol and not more than 99.86% conversion was achieved with pure ethanol. Catalyst systems supported on HZSM-5 and activated carbon were successfully synthesised. Ethanol, butanol and ethanol-butanol mixtures were successfully converted to liquid hydrocarbons and the conversion was greater than 90%. On the promoted catalysts, production of BTX were suppressed and various metals were observed to perform differently.Item VLE measurements of ether alcohol blends for investigation on reformulated gasoline(2016) Benecke, Travis Pio; Ramjugernath, Deresh; Ramsuroop, SureshSeparation processes in the chemical process industries is dependent on the science of chemical thermodynamics. In the field of chemical separation process engineering, phase equilibrium is a primary area of interest. This is due to separation processes such as distillation and extraction which involves the contacting of different phases for effective separation. The focal point of this research project is the measurement and modeling of binary vapour-liquid equilibrium (VLE) phase data of systems containing ether-alcohol organic compounds. The VLE data were measured with the use of the modified apparatus of Raal and Mühlbauer, (1998). The systems of interest for this research arose from an industrial demand for VLE data for systems containing ether-alcohol organic compounds. This gave rise to the experimental VLE data isotherms being measured for the following binary systems: a) Methyl tert-butyl ether (1) + 1-pentanol (2) at 317.15 and 327.15 K b) Methyl tert-butyl ether (1) + 2, 2, 4-trimethylpentane (2) at 307.15, 317.15 and 327.15K c) 2, 2, 4-Trimethylpentane (1) + 1-pentanol (2) at 350.15, 360.15 and 370.15K d) Diisopropyl ether (1) + 2,2,4-trimethylpentane (2) at 320.15, 330.15 and 340.15K e) Diisopropyl ether (1) + 1-propanol (2) at 320.15, 330.15 and 340.15K f) Diisopropyl ether (1) + 2-butanol (2) at 320.15, 330.15 and 340.15K The data for all the measured binary systems investigated at these temperatures are currently not available in the open source literature found on the internet and in library text resources. The systems were not measured at the same temperatures because certain system isotherm temperatures correlate to a pressures above 1 bar. This pressure of 1 bar is the maximum operating pressure specification of the VLE apparatus used in this project. The experimental VLE data were correlated for model parameters for both the and methods. For the method, the fugacity coefficients (vapour-phase non-idealities) were tabulated using the virial equation of state and the Hayden-O’Connell correlation (1975); chemical theory and the Nothnagel et al. (1973) correlation method. The activity coefficients (liquid phase non-idealities) were calculated using three local-composition based activity coefficients models: the Wilson (1964) model, the NRTL model (Renon and Prausnitz, 1968); and the UNIQUAC model (Abrams and Prausnitz, 1975). Regarding the direct method, the Soave-Redlich-Kwong (Redlich and Kwong, 1949) and Peng-Robinson (1976) equations of state ii were used with the temperature dependent alpha-function (α) of Mathias and Copeman (1983) with the Wong-Sandler (1992) mixing rule. Thermodynamic consistency testing, which presents an indication of the quality and reliability of the data, was also performed for all the experimental VLE data. All the systems measured showed good thermodynamic consistency for the point test of Van Ness et al. (1973) - the consistency test of choice for this research. This however, was based on the model chosen for the data regression of a particular system. Therefore, the combined method of VLE reduction produced the most favourable results for the NRTL and Wilson models.