Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Effect of operating conditions on the hydrothermal valorisation of sewage sludge
    (2021-02) Madikizela, Mbaliyezwe Precious
    The accelerated population growth, in conjunction with the rapid urbanisation rate, are the principal driving forces behind the augmented volumes of municipal sewage sludge generated worldwide. The traditional approaches of sewage sludge treatment, which include landfilling and agricultural application, are no longer within the realms of possibility due to rigorous regulations, deficiency in the capacity of land available and the environmental and health adversities associated with detrimental constituents of sewage sludge. The population and urbanisation advancements do not only influence the emergent volumes of sewage sludge, but they also instigate fundamental provocations to the global energy demand. The reliance on fossil fuels poses a significant threat, not only to sustainable development, however they are also hugely responsible for the cumulative carbon dioxide and other greenhouse gas (GHG) emissions that deteriorate the environment, trigger global warming and deleteriously impact the livelihood of all life on earth. In line with the quest for sustainable and renewable alternative energy sources, the thermochemical treatment of municipal sewage sludge has a triple advantage of valorising the abundant volumes of the sludge, addressing the injurious nature of conventional fuels to the environment and seeking to bridge the gap as their supply diminishes. This study followed a quantitative approach, with the purpose to convert municipal sewage to valuable bio-oils. The sewage sludge was subjected to hydrothermal liquefaction in 60 ml stainless steel batch reactors, where the effect of temperature, solvent composition, and solvent content were investigated, and all the other process parameters were maintained at a constant. The six temperatures that were explored were 220oC, 250oC, 280oC, 310oC, 340oC, 370oC. The two solvents investigated were de-ionised water (H2O) and ethanol (E) which were applied in the following compositions: 1:0, 1:1 and 0:1 (H2O:E). The five solvent contents investigated were 75%, 80%, 85%, 90% and 95%. The process yielded bio-oils, solid phase and gaseous products and an aqueous phase. Dichloromethane was used as an extraction medium. The obtained results revealed that the temperature, solvent type and solvent content had a significant influence on the yield of bio-oil produced while temperature was the most influential out of the three parameters. When temperatures approached supercritical conditions of water, a notable decline in the bio-oil yields was observed. For each temperature, the bio-oil yields initially increased until about 85% solvent content, and then slightly decreased thereafter. The highest bio-oil yields were achieved at 310oC and the best yields were obtained when the ratio of H2O and E were 1:1. This study found that the optimum operating conditions were obtained at 310oC, 85% solvent content and a 1:1 composition of H2O and ethanol; the bio-oil yields at those conditions was determined to be 40,6 wt%. The bio-oils were contained in the following order of prevalence, fatty acids, aliphatic hydrocarbons, N-containing compounds, O-containing compounds, aromatics and acid esters. Aliphatic hydrocarbons and fatty acids were the dominant functional groups. The following were the most abundant compounds in the 90 runs: heptadecane, pentadecane, eicosane, hexadecane 2,6,10,14-tetramethyl hexadecane and 9-octadecanoic acid.
  • Thumbnail Image
    Item
    Optimization of anaerobic co-digestion of sewage sludge using bio-chemical substrates
    (2018) Madondo, Nhlanganiso Ivan; Chetty, Manimagalay
    The anaerobic process is increasingly becoming a subject for many as it reduces greenhouse gas emissions and recovers carbon dioxide energy as methane. Even though these benefits are attainable, proper control and design of the process variables has to be done in order to optimize the system productivity and improve stability. The aim of this research was to optimize methane and biogas yields on the anaerobic co-digestion of sewage sludge using bio-chemical substrates as co-substrates. The first objective was to find the bio-chemical substrate that will generate the highest biogas and methane yields. The anaerobic digestion of these substrates was operated using 6 L digesters at 37.5℃. The substrate which generated the highest biogas and methane yield in the first batch experiment was then used for the second batch test. The objective was to optimize the anaerobic conditions (substrate to inoculum ratio, co-substrate concentration and temperature) in-order to optimize the biogas and methane yields. The second batch test was achieved using the conventional One-Factor-At-A-Time (OFAT) and the Design of Experiment (DOE) methods. Final analysis showed that the bio-chemical substrates could be substrates of interest to biogas generators. Amongst the substrates tested in the first batch experiment glycerol (Oleo-Chemical Product waste) generated the highest methane and biogas yields of 0.71 and 0.93 L. (g volatile solids added)-1, respectively. It was believed that glycerol contains significant amount of other organic substances such as lipids that have higher energy content than the other bio-chemical substrates, thus generating larger biogas and methane yields. Moreover, digestion of sewage sludge alone produced biogas yields of 0.19 L /g VS and 0.33 L/g COD, and methane yields of 0.16 L/g VS and 0.28 L/g COD. Generally, co-digestion yields were higher than digestion yields of sewage alone. Using the OFAT method the results of the second batch test on glycerol demonstrated highest amounts of volatile solids (VS) reduction, chemical oxygen demand (COD) reduction, biogas yield and methane yield of 99.7%, 100%, 0.94 L (g VS added)-1 and 0.75 L (g VS added)-1 at a temperature, substrate to inoculum ratio and glycerol volume of 50℃, 1 (on VS basis) and 10 mL, respectively. Above 22 mL and substrate to inoculum ratio of 1, the process was inhibited. The DOE results suggested that the highest methane and biogas yields were 0.75 and 0.94 L (g VS added)-1, respectively. These results were similar to the OFAT results, thus the DOE software may be used to define the biogas and methane yields equations for glycerol. In conclusion, anaerobic co-digestion of bio-chemical substrates as co-substrates on sewage sludge was successfully applied to optimize methane and biogas yields.