Faculty of Engineering and Built Environment
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9
Browse
4 results
Search Results
Item An investigation into harvesting solar energy using thermoelectric generator coupled IBR sheeting(2024-05) Malik, Momina; Gilpin, Mark; Graham, Bruce RobertThere is a current global impending need for clean and renewable energy sources. Fossil fuels are non-renewable finite resources, which are dwindling because of high cost, and environmentally damaging retrieval techniques. South Africa’s coal resources may soon reach their end, which further stresses the need for green energy. An efficient and more feasible alternative is solar energy. Thermoelectric generators (TEGs) may use the energy from the sun to generate power and are an innovative means to harvest electricity. The proposed study intends to validate whether TEGs are a potential method to harvesting solar power. The study herein is a preliminary experimental investigation into a development in a TEG modular prototype. Relevant tests are run, and the performance characteristics obtained from experiments are discussed. The TEG system developed and tested in this study consists of 2 equally sized pieces of Inverted Box Rib (IBR) sheeting with one side exposed to a light source, while the other side remains shaded. An Arduino, connected and coded to read and display resulting temperatures, Peltier tiles, magnets, simple heatsinks and Multimeters are connected to measure open circuit voltage and closed-circuit current generated from the temperature difference between the two sides of the IBR sheeting. The system aims to harvest energy whilst keeping the assembly and construction simple, practical, and minimalistic. Outdoor experiments were conducted to determine the temperatures and the resultant temperature gradients the configuration may experience in operation. The data collected established parameters for the laboratory experimental setup. The laboratory experiments characterized the power output of the units. For comparative purposes, some variables were removed, such that the testing variable was isolated. Some environmental variables were removed by testing in a laboratory. The TEG was tested in the vertical position to allow for maximum natural convection, and hence may not reflect results that would be obtained in all applications. The TEG system is exposed to the light source at different distances, perpendicular to the sheets. The study intends to investigate the effect that the 2 variables have on the amount of solar power generated i.e., the colour of metal IBR sheeting, and the ideal electrical arrangement for scalability of Peltier tiles for maximum power output (𝑃𝑚𝑎𝑥). The IV curve generation method (later explained in chapter 2.4.1) is used to read the parameters required to calculate 𝑃𝑚𝑎𝑥. The results show a strong influence of the black coated sheets on the power output of the TEGs. It is deduced from solar experiments, that the aluminium rods used as the heatsink fulfilled its purpose of regulating a ∆T of 1-2°𝐶. Furthermore, the TEG in series configuration, generated the highest 𝑃𝑚𝑎𝑥 when located 300mm from the heat source, followed by 600mm and lastly, 900mm. The same pattern is found for the unit and parallel configurations. It may be concluded from the proposed TEG system that TEGs are a potential method of harvesting solar energy on IBR sheeting, specifically in a vertical position. However, applications of different orientations and geographical locations require further investigation. The results merit further investigation and refinement into the use of TEGs on IBR sheeting where the herein designed TEG system is set-up in a user friendly, simple, cost effective and practical manner for solar energy harvesting. While the power output per TEG tile is small in magnitude, the proposed configuration has potential in the coupling of multiple units to increase power output. The current work shows potential for the use of TEGs in this application. Through further investigation, refinement and cost analysis, the system may prove to be a practical method of solar energy harvesting.Item Feasibility analysis and optimization of new energy technologies for sustainable development(2024-05) Kumba, Hagreaves; Olanrewaju, Oludolapo AkanniEnergy is essential for crucial development in Africa. The current electricity shortages or load shedding in South Africa show the country faces significant challenges in reaching positive economic growth. For industries to operate sustainably, an innovative mechanism must be tailored to solve the negative impacts of industrial energy use, particularly climate change. Even though fossil fuels generate the majority of produced electricity in South Africa, the country’s potential for renewable energy sources is vast. In contrast, solar irradiance and wind offer considerable commercial potential. New renewable energy resources are widely seen as a means to address the challenges of climate change and energy insecurity. They can be of crucial importance in developing a sustainable economy in the country. The study aims to show how renewable energy technologies can provide new economic opportunities, contribute to higher standards of living, and reduce the impacts of society on ecosystems, among other things. This thesis presents a feasibility analysis and optimization of new energy technologies by designing and simulating a grid-connected PV system for sustainable development. The PVsyst software was used to simulate and optimize the PV system. The software was used to design and model the PV systems and to calculate the energy production, economic performance, and environmental impact. The researcher utilized simulation data to compare PV system performance in three scenarios and identify the optimal one. Overall, the findings of this thesis suggest that grid-connected PV systems are a feasible and sustainable option to meet South Africa's energy needs. By implementing the results and recommendations, the government, investors, and community can work together to develop and deploy a successful PV system that will benefit all.Item Power flow and faults analysis of a hybrid DC Microgrid : PV system and wind energy(2021-12-01) Zulu, Musawenkosi Lethumcebo Thanduxolo; Ojo, Evans E.; Akinrinde, Ajibola O.Rural electrification has become a very important means of improving the standard of living of rural dwellers, a process which also helps in the electrification of remote and isolated regions. Presently, the electrification of such regions can be achieved through the use of renewable energy. The use of renewable energy sources such as PV and wind energy is gaining popularity as the solution to achieving the electrification of rural areas, such as the use of the microgrid, which can be in the form of an AC or DC microgrid. The DC microgrid can be used to connect distributed energy resources and its energy storage is considered to be an economical system to meet consumer demand due to its benefits, namely environmental friendliness, reliability and good performance in load distribution. The power system may experience many faults when transferring power via overhead transmission lines to the load. When these faults occur, it is important to detect the location and isolate the part that had experienced the fault quickly, without de-activating the whole microgrid. The main aim of this study was to conduct a power flow and faults analysis on a hybrid DC microgrid model with battery storage. The hybrid energy sources for the DC microgrid are the PV system and wind energy system. Firstly, this research conducted a power flow analysis for the hybrid DC microgrid. Secondly, a fault analysis was carried out on the system and both the power flow and the fault analysis were formulated through implementation in a MATLAB/Simulink environment under various conditions in order to ascertain the stability and reliability of the system. Various MATLAB/Simulations were carried out, including the DC single-line-ground fault and DC line-line fault and are analysed in a designed hybrid DC microgrid power system. The results showed that DC line-to-line and DC line-to-ground faults lead to the imbalance of DC voltage, which is difficult to re-balance and stabilize in the system after the existence of these faults. When these faults occurred in the system, there was immense fluctuation and unsteadiness of output load power delivered to consumers. Moreover, wind-generated power on the generation side was severely affected. Based on the results and analysis of those results, the hybrid DC microgrid is seen as a satisfactory and optimum concept for the generation and transmission of power for rural and isolated area electrification, i.e. it can provide power to remote areas that cannot be reached by the national grid. The study revealed, based on the analysis of results, that it has an effective response under fault conditions. Results for a hybrid DC microgrid revealed that high quality of power is experienced in load distribution. Also based on the results, when DC faults occurs there is disturbance to output.Item Energy assessment and scheduling for energy optimisation of a hot dip galvanising process(2021-12-01) Dewa, Mendon; Nleya, Bakhe; Dzwairo, BloodlessThe dearth of energy sustainability is posing major challenges both locally and glob- ally. Galvanising furnaces are categorised as dominant consumers of electricity in the overall galvanising industry. Relatively little research has been carried out concerning energy optimisation through sequencing or scheduling algorithms by way of enhancing the performance of galvanising lines. In this regard, the research centres on evaluating overall energy performance in this industry. The research sought to introduce an opti- mal energy optimisation-scheduling algorithm for a hot dip galvanising process. A DMAIC based methodology was presented for the provisioning of a structured prob- lem-solving process for improving energy efficiency in a galvanising process. Its framework embraces an energy sustainability assessment of four batch hot-dip galva- nising plants. Four energy minimisation opportunities were identified and quantifiable energy and cost savings, as well as avoided carbon dioxide emissions were derived from the analysis of one of the plants. Production or zinc used was identified as the main driver for electricity consumption for Plant 1, while the number of dips per month, amount of zinc used, and ambient temperature conditions were identified as the rele- vant variables for developing a regression model for Plant 2. The amount of zinc used and ambient temperature conditions were found to be the relevant variables for Plant 3. The derived regression model for Plant 4 was based on the amount of zinc used and ambient temperature conditions. The energy performance indicators for a galvanising plant were established through a comparison of actual and expected consumption, energy intensity index, cumulative sum, and specific energy consumption. A bi-objective GECOS algorithm was further introduced to reduce the total energy consumption as well as makespan. The simula- tion results revealed that the GECOS algorithm outperforms McNaughton’s algorithm, Shortest Processing Time Algorithm, and Integer Linear Programming algorithms on minimising makespan on parallel processing machines. The key contributions to the body of knowledge from the study include a unique eval- uation of electrical energy consumption by a hot-dip galvanising plant, development of an energy consumption baseline and performance indices, and the developed novel bi-objective GECOS algorithm that considers reducing total energy consumption by the process tanks as well as makespan. Future research work may focus on hybrid genetic algorithm-artificial immune system scheduling tools that would derive synergy from the advantages of both algorithms to improve energy performance.