Repository logo
 

Faculty of Engineering and Built Environment

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/9

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    39th Johannesburg International Conference on “Chemical, Biological and Environmental Engineering” (JCBEE-23) Nov. 16-17, 2023 Johannesburg (South Africa)
    (International Institute of Chemical, Biological & Environmental Engineering (IICBEE), 2023-11-16) Chetty, Manimagalay; Rathilal, Sudesh; Tetteh, Emmanuel; Singh, Nikita
    Abstract—Recent energy demand and environmental concerns associated with fossil fuels makes algae biomass a desirable energy source. Algal biomass has a high organic content and a variety of metabolic properties that make it a promising resource for managing wastewater and sequestering CO₂, in addition to producing profitable biobased products. However, the operation and valorization of algae biomass on a large scale are accompanied by significant costs and setbacks. Therefore, the transition towards a biobased economy requires this study to examine emerging technologies that could utilize algae biomass as an industrialized feedstock from the wastewater settings. A comprehensive analysis of various green technologies of producing high-value products (lipids and hydrocarbons) from algae biomass was reviewed. The fundamental principles that limit the cultivation , extraction, and conversion of different types of algae biomasses for commercialization are discussed. Furthermore, the challenges, future research directions and potential opportunities of valorizing algae biomass was highlighted. It was noted that, exploring algae biomass towards sustainable waste management with resources recovery is viable for industrialization.
  • Thumbnail Image
    Item
    The effect of heavy metal composition on the performance of sugarcane bagasse as an adsorbant in water treatment
    (2021-04) Buthelezi, Nokulunga Priscilla; Isa, Yusuf Makarfi
    Wastewater produced by the industries is potentially harmful to the ecosystem because of various contaminants like heavy metals that find their way into soil and water supplies. Industrial waste constitutes different kinds of metal which contaminate natural water. Heavy metals can build up in the environment and enter living organisms through chain elements such as the food chain and therefore, pose a major health risk to living organisms. The situation has been worsened by the absence of broadly accepted heavy metal treatment techniques, thus this challenge continues to receive considerable attention from stakeholders including scientists and researchers. While many technologies have been proposed such as reverse osmosis, flocculation, ion exchange and so on and so forth, they continue to suffer from a number of drawbacks including generation of secondary wastes and cost ineffectiveness. Thus, in the present study, adsorption was chosen as a cost effective, efficient, and environmentally friendly treatment process. Sugar cane milling production produces a lot of sugar cane bagasse which is considered as environmental waste if not disposed properly. It is imperative to remove heavy metals from polluted water before discharging it into the environment, rivers and lakes using sustainable techniques. Heavy metal removal from wastewater using low-cost adsorbents like sugarcane bagasse addresses two problems: removal of pollutants from water and utilization of agricultural waste. This study evaluated the performance of sugarcane bagasse in the removal of heavy metals. Sugarcane bagasse was characterized to determine the functional groups, the porosity and surface area, crystallinity and morphology using FTIR, SEM and XRD. One factor at a time (OFAT) approach was used to evaluate the effect of operating parameters on the removal of heavy metal ions. A 3-system component of the stock solution of synthesized wastewater namely single, binary and ternary were studied. The 3 metal ions evaluated were Copper, Chromium and Cadmium. The factors considered in the OFAT design of experiments were contact time (30-240 mins), adsorbent dosage (5-30g/L), initial concentration (50-500 mg/L), pH(2-9), and particle size (75-600 μm). It was observed that all adsorption parameters had an effect on the adsorption rate. However, an adsorption dosage had a greater impact on the adsorption rate. An increase in the adsorption dosage from (5-20 g) showed that the percentage removal efficiency for chromium, copper and cadmium increased from (40-72%, 44-75% and 39-59%) in a single metal system. In addition, the percentage removal increased from (34-62% for chromium, 47- 78% for copper, and 34-62% for cadmium) in a binary metal system. Furthermore, the percentage removal increased from (38-52%, 40-59% and 24-43%) for chromium, copper, and cadmium in a ternary metal system. Adsorption capacity of the adsorbent was determined using the optimal operating parameters obtained from the OFAT design of experiments. Langmuir and Freundlich isotherms were used to analyze the adsorption data. The OFAT design of experiments resulted in producing the optimum conditions for adsorption. The optimum conditions for maximum adsorption were, contact time (180 mins), initial concentration (50 mg/L), pH (7), dosage (20 g), particle size (340-450 μm) and a mixing speed of 150 rpm. Adsorption capacities differed between the 3 system components. Maximum adsorption capacities of 38.41 mg/L were registered for copper ions and was recorded for the single component system. Stock solutions containing copper ions registered the highest adsorption capacity. There was a significant decrease in the maximum adsorption capacities for copper ions of the binary and ternary system components which were 21.45 mg/L and 1.237 mg/L respectively. This was attributed to the co-metal ion dependence in both the binary and ternary system components. In conclusion, the study showed that sugarcane bagasse can be used as an adsorbent in the efficient removal of heavy metal ions present in wastewater.
  • Thumbnail Image
    Item
    Influence of effluent type on the performance of chitosan as a coagulant
    (Akshar Publications, 2014) Pambi, Ritha-Lorette Luti; Musonge, Paul
    The use of chitosan as a bio-polymeric coagulant has continued to attract interest in water treatment due to its biodegradability and non-toxicity. Its ability to treat effluents of high organic content has been investigated in some food processing industries. The focus of the present study is to compare results of the use of chitosan in the treatment of effluent from a Sugar Processing Plant (SPP), with those obtained from the treatment of wastewater from a Milk Processing Plant (MPP) and from a Brewery Processing Plant (BPP), in order to determine the influence of effluent type on the impurities removal efficiency. The treatment of the MPP provided the best removal efficiency (99% suspended solids removal and 70% COD removal) in comparison to the SPP (98% suspended solids removal and 11% COD removal) and BPP (95% suspended solids removal and 50% COD removal). The optimum pH value varied as a function of the type of effluent with BPP= 4.5, SPP = 4.5 and MPP =7. The results indicate that chitosan is not very efficient for the removal of dissolved matter. A relationship between total suspended solids (TSS) and total dissolved solids (TDS) has been developed.