Faculty of Applied Sciences
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5
Browse
Item 12 Polyphenol oxidases : the future toward global sustainability(De Gruyter, 2024-04-08) Harun-Ur-Rashid, Mohammad; Krishna, Suresh Babu Naidu; Golla, Narasimha; Bin Imran, AbuPolyphenol oxidases (PPOs) are enzymes that catalyze the oxidation of phenolic compounds, which are abundant in many plant-based foods. PPOs are crucial in postharvest losses and food waste, especially in developing countries with underdeveloped food supply chains. There has been a growing interest in utilizing PPOs for sustainable food production and preservation, modifying phenolic compounds to develop new food products, detecting phenolic compounds in various products, and utilizing bioremediation, agriculture, biotechnology, and waste management techniques to promote global sustainability. These advances have the potential to provide effective solutions toward achieving a more sustainable future. The most promising application of PPOs for achieving global sustainability is their use as a natural preservative to prolong the shelf life of fresh produce. They can be used to produce novel food products, such as functional foods and nutraceuticals, by modifying the phenolic compounds. The approach can add value to the food industry by creating new products with health benefits and reducing waste. PPOs can be used in bioremediation processes to degrade phenolic compounds found in industrial wastewater and produce natural antioxidants from food waste, promoting circular economy principles. They can also contribute to sustainable agriculture by increasing plant resistance to pests and diseases, reducing synthetic pesticides and herbicides, and improving crop yields. Overall, PPOs have a promising role in creating a more sustainable environment. This chapter thoroughly examines the latest developments in utilizing PPOs for sustainable food production and waste management. It emphasizes the enzyme's potential in natural preservation, novel food production, bioremediation, and sustainable agriculture. Additionally, the authors explore the wide range of applications for PPOs, such as biosensors, bioremediation, agriculture, and biotechnology.Item 7 Unlocking nature’s remediation arsenal : the role of polyphenol oxidases in efficient and eco-friendly industrial wastewater treatment(De Gruyter, 2024-04-08) Nagarajan, Prithiviraj; Rajathy, Leena; Patil, Sharangouda J.; Golla, Narasimha; Krishna, Suresh Babu NaiduPhenol and its derivatives have gained considerable attention recently due to their high toxicity, teratogenicity, and mutagenicity. Petroleum refinery wastewater is a significant source of phenolic compounds. However, conventional techniques used to treat these wastewaters have several drawbacks, such as incomplete or inefficient removal of phenols. In contrast, biocatalytic processes have garnered significant attention as they offer sustainable and effective removal of toxins, including phenols, from wastewater. Among various biocatalysts, polyphenol oxidases have emerged as major biocatalytic enzymes. These enzymes contain copper and catalyze the oxidation of specific phenolic substrates to quinones in the presence of molecular oxygen. Polyphenol oxidases have a wide range of applications. In the food industry, they are utilized for cocoa and tea production, enhancing coffee flavor and assessing food quality. In medicine, they find applications in treating phenylketonuria, Parkinson's disease, and leukemia. In environmental technology, they play a crucial role in removing phenolic pollutants from industrial wastewater. In the pharmaceutical industry, polyphenol oxidase-immobilized electrodes differentiate between morphine and codeine. This chapter provides comprehensive details about polyphenol oxidases' structure, biochemical properties, and applications, specifically focusing on their role in wastewater treatment.Item Biosynthesis and characterization methods of copper nanoparticles and their applications in the agricultural sector(Elsevier, 2022-01-15) Reddy, Bhagavanth; Mangatayaru, Girija K.; D, Madhusudan Reddy; Krishna, Suresh Babu Naidu; Golla, Narasimha; Kamel A, Abd-ElsalamThis book provides information on the design and application of ecologically safe formulations, for protecting cultivated crops against insects and pathogen-causing diseases, plant science, antimicrobial applications and agroecosystem ...Item Current strategies in targeted anticancer drug delivery systems to brain(Elsevier, 2021) Bania, Ratnali; Borah, Pobitra; Deka, Satyendra; Dahabiyeh, Lina A.; Singh, Vinayak; Al-Shar’i, Nizar A.; Nair, Anroop B.; Goyal, Manoj; Venugopala, Katharigatta N.; Tekade, Rakesh Kumar; Deb, Pran Kishore; Dua, Kamal; Mehta, Meenu; de Jesus Andreoli Pinto, Terezinha; Pont, Lisa; Williams, Kylie; Rathbone, MichaelAdvanced Drug Delivery Systems in the Management of Cancer discusses recent developments in nanomedicine and nano-based drug delivery systems used in the treatment of cancers affecting the blood, lungs, brain, and kidneys. The research presented in this book includes international collaborations in the area of novel drug delivery for the treatment of cancer. Cancer therapy remains one of the greatest challenges in modern medicine, as successful treatment requires the elimination of malignant cells that are closely related to normal cells within the body. Advanced drug delivery systems are carriers for a wide range of pharmacotherapies used in many applications, including cancer treatment. The use of such carrier systems in cancer treatment is growing rapidly as they help overcome the limitations associated with conventional drug delivery systems. Some of the conventional limitations that these advanced drug delivery systems help overcome include nonspecific targeting, systemic toxicity, poor oral bioavailability, reduced efficacy, and low therapeutic index. This book begins with a brief introduction to cancer biology. This is followed by an overview of the current landscape in pharmacotherapy for the cancer management. The need for advanced drug delivery systems in oncology and cancer treatment is established, and the systems that can be used for several specific cancers are discussed. Several chapters of the book are devoted to discussing the latest technologies and advances in nanotechnology. These include practical solutions on how to design a more effective nanocarrier for the drugs used in cancer therapeutics. Each chapter is written with the goal of informing readers about the latest advancements in drug delivery system technologies while reinforcing understanding through various detailed tables, figures, and illustrations. Advanced Drug Delivery Systems in the Management of Cancer is a valuable resource for anyone working in the fields of cancer biology and drug delivery, whether in academia, research, or industry. The book will be especially useful for researchers in drug formulation and drug delivery as well as for biological and translational researchers working in the field of cancer.Item The future of graphene oxide-based nanomaterials and their potential environmental applications: a contemporary view(Springer International Publishing, 2023) Chakroborty, Subhendu; Panda, Pravati; Krishna, Suresh Babu Naidu; Prakash, Jai; Junghuyn, Cho; Janegitz, Bruno Campos; Shuhui, SunEnvironmental safety is vital to life on Earth. Environment and life are interconnected like two sides of a coin. Pollution is a serious challenge in both developing and developed nations. Rapid rise in human civilization, together with metrological works and industrialization, affects the environment. Due to the excessive release of heavy metal ions, air, water, and soil-borne diseases as corona, cholera, cardiovascular issues, chronic conditions, and cancer increase. Different research organizations use several ways to combat environmental problems. Nanotechnology-based solutions are cost-effective and efficient. Nanomaterials’ multifaceted applications revolutionize science. Its particle-to-size ratio gives a wide surface area with several reactive sites. Carbon-based nanomaterials like graphene, fullerene, carbon nanotubes, graphene oxide, carbon-based quantum dots, etc., have received a lot of attention due to their application to combat environmental issues. Through this chapter, we want to draw researchers’ and academics’ attention to recent trends and applications of graphene oxide based photocatalysts in degradation of organic dye pollutants, biomedical significance, challenges, and future perspectives which will improve the development and application of more multidimensional nanomaterials to human health and for the development of biodiagnostics.Item Green synthesis of metal nanoparticles for antimicrobial activity(IntechOpen, 2021-06-09) Moodley, Jerushka S.; Krishna, Suresh Babu Naidu; Pillay, Karen; Govender, Patrick; Karthikeyan, KrishnamoorthyThe development and extensive spread of multi-drug resistant bacteria are considered as a major public health concern. Failures to control severe infections due to antibiotic resistance have augmented healthcare costs as well as patient morbidity and mortality. Presently, natural product-based therapeutics are gaining significant attention both for their antimicrobial effectiveness and for not persuading drug resistance. Furthermore, recent developments in nanoscience on new drug delivery systems built on nanostructured materials from plants and microbes have emerged which focus on targeted delivery and controlled release of therapeutic agents. This review examines the recent investigations on the biological activities of plant and bacterial biological material for silver nanoparticle (AgNP) synthesis. Also, the underlying mechanism of antimicrobial activities of silver nanoparticles against human pathogens will be discussed. A fact of the biological activities and/or chemical responses of plants is required, not only for the discovery of new therapeutic agents, but because such evidence may be of value in disclosing new sources of already known biologically active compounds.Item Theoretical principles and applications of high performance capillary electrophoresis(Nova Science Publishers, 2015) Bathinapatla, Ayyappa; Kanchi, Suvardhan; Sabela, Myalowenkosi I.; Bisetty, KrishnaThis book chapter is aimed at addressing the theoretical principles and applications of capillary electrophoresis (CE) for the separation of high intensity artificial sweeteners. Electrophoresis is a technique in which solutes are separated by their movement with different rates of migration in the presence of an electric field. Capillary electrophoresis emerged as a combination of the separation mechanism of electrophoresis and instrumental automation concepts in chromatography. Its separation mainly depends on the difference in the solutes migration in an electric field caused by the application of relatively high voltages, thus generating an electro-osmotic flow (EOF) within the narrow-bore capillaries filled with the background electrolyte. Currently capillary electrophoresis is a very powerful analytical technique with a major and outstanding importance in separations of compounds such as amino acids, chiral drugs, vitamins, pesticides etc., because of simpler method development, minimal sample volume requirements and lack of organic waste. The main advantage of capillary electrophoresis over conventional techniques is the availability of the number of modes with different operating and separation characteristics include free zone electrophoresis and molecular weight based separations (capillary zone electrophoresis), micellar based separations (micellar electrokinetic chromatography), chiral separations (electrokinetic chromatography), isotachophoresis and isoelectrofocusing makes it a more versatile technique being able to analyse a wide range of analytes. The ultimate goal of the analytical separations is to achieve low detection limits and CE is compatible with different external and internal detectors such as UV or photodiode array detector (DAD) similar to HPLC. CE also provides an indirect UV detection for analytes that do not absorb in the UV region. Besides the UV detection, CE provides five types of detection modes with special instrumental fittings such as Fluorescence, Laserinduced Fluorescence, Amperometry, Conductivity and Mass spectrometry. Infact, the lowest detection limits attained in the whole field of separations are for CE with laser induced fluorescence detection. Regarding the applications of CE, the separation and determination of high intensity sweeteners were discussed in this chapter. The materials which show sweetness are divided into two types (i) nutritive sweeteners and (ii) non-nutritive sweeteners. The main nutritive sweeteners include glucose, crystalline fructose, dextrose, corn sweeteners, honey, lactose, maltose, invert sugars, concentrated fruit juice, refined sugars, high fructose corn syrup and various syrups. Non-nutritive sweeteners are sub-divided into two groups of artificial sweeteners and reduced polyols. On the other hand, based on their generation; artificial sweeteners can further be divided into three types as (a) first generation artificial sweeteners which includes saccharin, cyclamate and glycyrrhizin (b) second generation artificial sweeteners are aspartame, acesulfame K, thaumatin and neohesperidinedihydrochalcone (c) neotame, sucralose, alitame and steviol glycosides falls under third generation artificial sweeteners. Artificial sweeteners are also classified into three types based on their synthesis and extraction: (i) synthetic (saccharin, cyclamate, aspartame, acesulfame K, neotame, sucralose, alitame) (ii) semi-synthetic (neohesperidinedihydrochalcone) and (iii) natural sweeteners (steviol glycosides, mogrosides and brazzein protein). Polyols are other groups of reduced-calorie sweeteners which provide bulk of the sweetness, but with fewer calories than sugars. The commonly used polyols are: erythritol, mannitol, isomalt, lactitol, maltitol, xylitol, sorbitol and hydrogenated starch hydrolysates (HSH). The studies revealed that capillary electrophoresis was successfully used for the separation of high intensity artificial sweeteners such as neotame, sucralose and steviol glycosides. Additionally, the available methods for the other artificial sweeteners using capillary electrophoresis were reviewed besides the above indicated sweeteners.