Faculty of Applied Sciences
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5
Browse
5 results
Search Results
Item Current strategies in targeted anticancer drug delivery systems to brain(Elsevier, 2021) Bania, Ratnali; Borah, Pobitra; Deka, Satyendra; Dahabiyeh, Lina A.; Singh, Vinayak; Al-Shar’i, Nizar A.; Nair, Anroop B.; Goyal, Manoj; Venugopala, Katharigatta N.; Tekade, Rakesh Kumar; Deb, Pran Kishore; Dua, Kamal; Mehta, Meenu; de Jesus Andreoli Pinto, Terezinha; Pont, Lisa; Williams, Kylie; Rathbone, MichaelAdvanced Drug Delivery Systems in the Management of Cancer discusses recent developments in nanomedicine and nano-based drug delivery systems used in the treatment of cancers affecting the blood, lungs, brain, and kidneys. The research presented in this book includes international collaborations in the area of novel drug delivery for the treatment of cancer. Cancer therapy remains one of the greatest challenges in modern medicine, as successful treatment requires the elimination of malignant cells that are closely related to normal cells within the body. Advanced drug delivery systems are carriers for a wide range of pharmacotherapies used in many applications, including cancer treatment. The use of such carrier systems in cancer treatment is growing rapidly as they help overcome the limitations associated with conventional drug delivery systems. Some of the conventional limitations that these advanced drug delivery systems help overcome include nonspecific targeting, systemic toxicity, poor oral bioavailability, reduced efficacy, and low therapeutic index. This book begins with a brief introduction to cancer biology. This is followed by an overview of the current landscape in pharmacotherapy for the cancer management. The need for advanced drug delivery systems in oncology and cancer treatment is established, and the systems that can be used for several specific cancers are discussed. Several chapters of the book are devoted to discussing the latest technologies and advances in nanotechnology. These include practical solutions on how to design a more effective nanocarrier for the drugs used in cancer therapeutics. Each chapter is written with the goal of informing readers about the latest advancements in drug delivery system technologies while reinforcing understanding through various detailed tables, figures, and illustrations. Advanced Drug Delivery Systems in the Management of Cancer is a valuable resource for anyone working in the fields of cancer biology and drug delivery, whether in academia, research, or industry. The book will be especially useful for researchers in drug formulation and drug delivery as well as for biological and translational researchers working in the field of cancer.Item Experimental design approach for quantitative expressions of simultaneous quantification of two binary formulations containing remogliflozin and gliptins by RP-HPLC(MDPI AG, 2022) Attimarad, Mahesh; Venugopala, Katharigatta Narayanaswamy; Nair, Anroop Balachandran; Sreeharsha, Nagaraja; Deb, Pran KishoreThe aim of this study was to develop a fast RP-HPLC method for simultaneous measurement of two antidiabetic formulations (vildagliptin + remogliflozin and teneligliptin + remogliflozin) under identical experimental conditions. Using the Box–Behnken approach and response surface design, the interaction and quadratic influence of three variable parameters, acetonitrile %, pH of the mobile phase, and flow rate, on resolution between the peaks were optimized. To forecast the resolution of peaks (2.7 and 6.5) for the three anti-diabetic medications, the design space with desirability function was used to find the optimal chromatographic conditions. Isocratic elution with 58:42 acetonitrile and phosphate buffer (20 mM KH2PO4, pH adjusted to 4.9 with orthophosphoric acid) over a Zorabx C18 HPLC column with a flow rate of 1.2 mL min−1 separated all three analytes in 2.5 min. In addition, the optimized HPLC process was validated using ICH recommendations. The devised HPLC method’s precision and accuracy were proven by the low percent relative standard deviation (0.60–1.65%), good percentage recovery (98.18–101.50%), and low percentage relative errors (0.20–1.82%). The method’s robustness was also proven by slightly varying the five separate parameters. Finally, the accuracy of the proposed HPLC approach was confirmed using a standard addition method for simultaneous determination of vildagliptin + remogliflozin and teneligliptin + remogliflozin from formulations. Furthermore, the findings demonstrated that experimental design can be successfully used to optimize chromatographic conditions with fewer runs. The devised HPLC method for simultaneous quantification of two binary combinations utilizing the same chromatographic conditions is fast, accurate, precise, and easy, and it might be utilized in laboratories for routine quality control investigations on both formulations.Item Crystallography, molecular modeling, and COX-2 inhibition studies on indolizine derivatives(MDPI AG, 2021-06) Venugopala, Katharigatta N.; Chandrashekharappa, Sandeep; Tratrat, Christophe; Deb, Pran Kishore; Nagdeve, Rahul D.; Nayak, Susanta K.; Morsy, Mohamed A.; Borah, Pobitra; Mahomoodally, Fawzi M.; Mailavaram, Raghu Prasad; Attimarad, Mahesh; Aldhubiab, Bandar E.; Sreeharsha, Nagaraja; Nair, Anroop B.; Alwassil, Osama I.; Haroun, Michelyne; Mohanlall, Viresh; Shinu, Pottathil; Venugopala, Rashmi; Kandeel, Mahmoud; Nandeshwarappa, Belakatte P.; Ibrahim, Yasmine F.The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a–e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, β = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.Item Larvicidal Activities of 2-Aryl-2,3-Dihydroquinazolin-4-ones against Malaria Vector Anopheles arabiensis, in Silico ADMET prediction and molecular target investigation(MDPI, 2020-03-02) Venugopala, Katharigatta Narayanaswamy; Ramachandra, Pushpalatha; Tratrat, Christophe; Gleiser, Raquel M.; Bhandary, Subhrajyoti; Chopra, Deepak; Morsy, Mohamed A.; Aldhubiab, Bandar E.; Attimarad, Mahesh; Nair, Anroop B.; Sreeharsha, Nagaraja; Venugopala, Rashmi; Deb, Pran Kishore; Chandrashekharappa, Sandeep; Khalil, Hany Ezzat; Alwassil, Osama I.; Abed, Sara Nidal; Bataineh, Yazan A.; Palenge, Ramachandra; Haroun, Michelyne; Pottathil, Shinu; Girish, Meravanige B.; Akrawi, Sabah H.; Mohanlall, VireshMalaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.Item Crystallography, in silico studies, and In vitro antifungal studies of 2,4,5 trisubstituted 1,2,3-triazole analogues(MDPI AG, 2020-06-20) Venugopala, Katharigatta N.; Khedr, Mohammed A.; Girish, Yarabahally R.; Bhandary, Subhrajyoti; Chopra, Deepak; Morsy, Mohamed A.; Aldhubiab, Bandar E.; Deb, Pran Kishore; Attimarad, Mahesh; Nair, Anroop B.; Sreeharsha, Nagaraja; V, Rashmi; Kandeel, Mahmoud; Akrawi, Sabah H.; Reddy M B, Madhusudana; Shashikanth, Sheena; Alwassil, Osama I.; Mohanlall, VireshA series of 2,4,5 trisubstituted-1,2,3-triazole analogues have been screened for their antifungal activity against five fungal strains, Candida parapsilosis, Candida albicans, Candida tropicalis, Aspergillus niger, and Trichophyton rubrum, via a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) microdilution assay. Compounds GKV10, GKV11, and GKV15 emerged as promising antifungal agents against all the fungal strains used in the current study. One of the highly active antifungal compounds, GKV10, was selected for a single-crystal X-ray diffraction analysis to unequivocally establish its molecular structure, conformation, and to understand the presence of different intermolecular interactions in its crystal lattice. A cooperative synergy of the C-H···O, C-H···N, C-H···S, C-H···π, and π···π intermolecular interactions was present in the crystal structure, which contributed towards the overall stabilization of the lattice. A molecular docking study was conducted for all the test compounds against Candida albicans lanosterol-14α-demethylase (pdb = 5 tzl). The binding stability of the highly promising antifungal test compound, GKV15, from the series was then evaluated by molecular dynamics studies.