Faculty of Applied Sciences
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5
Browse
2 results
Search Results
Item Cosmic censorship and charged radiation in second order Lovelock gravity(Elsevier BV, 2022-11) Brassel, Byron P.; Goswami, Rituparno; Maharaj, Sunil D.The conditions for naked singularity formation are considered for a radiating metric of Boulware–Deser type within an electromagnetic field in second order Lovelock (or Einstein–Gauss–Bonnet) gravity. The spacetime metric remains real only up to certain maximum charge contribution. This differs from general relativity. Beyond a certain maximal charge, there exists no real and physical spacetime since the metric becomes complex. We establish that, under certain parameters and for specific values of the mass function and charge contribution, this branch singularity is indeed a naked singularity. This is in contrast to the neutral case where the spacetime metric is always real for a positive mass function, and further, a weak, initially naked singularity always occurs before it becomes covered by an event horizon for all future time. We highlight that both neutral and charged collapse under gravity in Einstein–Gauss–Bonnet gravity differ significantly to their general relativistic counterparts.Item Stars and junction conditions in Einstein-Gauss-Bonnet gravity(IOP Publishing, 2023-06-15) Brassel, Byron P.; Maharaj, Sunil D.; Goswami, RituparnoThe junction conditions for a higher dimensional spherically symmetric charged and anisotropic static star are derived in Einstein–Gauss–Bonnet (EGB) gravity with nonvanishing cosmological constant. It is shown that for a timelike boundary hypersurface of zero thickness, the generalised matching conditions across this surface in EGB gravity are satisfied. A sufficient condition is that the Israel-Darmois conditions are valid. Therefore it is possible to generate a complete stellar model in EGB gravity. The interior matches to the exterior higher dimensional charged Boulware–Deser spacetime with cosmological constant. The barotropic radial pressure has to vanish at the boundary of the star which is also the case in general relativity.